Лабораторные исследования при различных патологиях. Общие и лабораторные исследования

Лабораторные методы исследования

Исследование мокроты. Мокрота - патологическое отделяемое органов дыхания, выбрасываемое при кашле. В состав мокроты могут входить слизь, серозная жидкость, клетки крови и дыхательных путей, простейшие, редко гельминты и их яйца. Исследование мокроты помогает установить характер патологического процесса в органах дыхания, а в ряде случаев определить его этиологию.

Мокроту для исследования следует брать утреннюю, свежую, по возможности до еды и после полоскания рта. Только для обнаружения микобактерий туберкулеза мокроту можно собирать в течение 1-2 сут (если больной выделяет ее мало). В несвежей мокроте размножается сапрофитная микрофлора, разрушаются форменные элементы. Для собирания мокроты используют специальные банки (плевательницы) с завинчивающимися крышками и мерными делениями.

Изучение мокроты начинают с ее осмотра сначала в прозрачной банке, а затем в чашке Петри, которую ставят попеременно на черный и белый фон. Отмечают следующие признаки.Характер, цвет и консистенция мокроты. Слизистая мокрота обычно бесцветная, вязкая, встречается при остром бронхите. Серозная мокрота тоже бесцветная, жидкая, пенистая, наблюдается при отеке легкого. Слизисто-гнойная мокрота, желтая или зеленоватая, вязкая, бывает при хроническом бронхите, туберкулезе и т. д. Чисто гнойная мокрота однородная, полужидкая, зеленовато-желтая, характерна для абсцесса легкого при его прорыве. Кровянистая мокрота может быть как чисто кровяной при легочных кровотечениях (туберкулез, рак, бронхоэктазы), так и смешанного характера, например слизисто-гнойная с прожилками крови (при бронхоэктазах), серозно-кровянистая пенистая (при отеке легкого), слизисто-кровянистая (при инфаркте легкого или застое

в системе малого круга кровообращения), гнойно-кровянистая, полужидкая, коричневато-серая (при гангрене и абсцессе легкого). Если кровь из дыхательных путей выделяется наружу не сразу, а длительно задерживается в них, ее гемоглобин превращается в гемосидерин и придает мокроте ржавый цвет (характерно для крупозной пневмонии).

При стоянии мокрота может расслаиваться. Для хронических нагноительных процессов характерна трехслойная мокрота: верхний слой слизисто-гнойный, средний-серозный, нижний-гнойный. Иногда гнойная мокрота разделяется на два слоя - серозный и гнойный.

Запах. Чаще отсутствует. Зловонный запах свежевыделенной мокроты зависит от гнилостного распада ткани (гангрена, распадающаяся раковая опухоль) либо от разложения белков мокроты при задержке ее в полостях (абсцесс, бронхоэктазы). Отдельные элементы, различимые невооруженным глазом. В мокроте могут быть обнаружены



спирали Куршмана в виде небольших плотных извитых беловатых нитей; сгустки фибрина - беловатые и красноватые древовидно-разветвленные эластичные образования, встречаемые при фибринозном бронхите, изредка при пневмонии; «чечевицы» - небольшие зеленовато-желтые плотные комочки, состоящие из обызвествленных эластических волокон, кристаллов холестерина и мыл и содержащие микобактерии туберкулеза; пробки Дитриха, сходные с «чечевицами» по виду и составу, но не содержащие туберкулезных микобактерии и издающие при раздавливании зловонный запах (встречаются при гангрене, хроническом абсцессе, гнилостном бронхите); зерна из-

вести, обнаруживаемые при распаде старых туберкулезных очагов; друзы актиномицетов в виде мелких желтоватых зернышек, напоминающих манную крупу; некротизированные кусочки ткани легкого и опухолей; остатки пищи.

Реакция среды. В мокроте реакция среды, как правило, щелочная; кислой она становится при разложении мокроты и от примеси желудочного сока, что помогает дифференцировать кровохарканье от кровавой рвоты.

Микроскопическое исследование мокроты. Производится как в нативных, так и в окрашенных препаратах. Для первых из налитого в чашку Петри материала отбирают гнойные, кровянистые, крошковатые комочки, извитые белые нити и переносят их на предметное стекло в таком количестве, чтобы при накрывании покровным стеклом образовался тонкий полупрозрачный препарат.

Его просматривают сначала при малом увеличении для первоначальной ориентировки и поисков спиралей Куршмана, а затем при большом увеличении для дифференцирования форменных элементов. Спирали Куршмана представляют собой тяжи слизи, состоящие из центральной плотной осевой нити и спиралеобразно окутывающей ее мантии, в которую бывают вкраплены лейкоциты (часто эозинофильные) и кристаллы Шарко- Лейдена (рис. 27). Спирали Куршмана появляются в



мокроте при спазме бронхов, чаще всего при бронхиальной астме, реже при пневмонии, раке легкого. При большом увеличении в нативном препарате можно обнаружить лейкоциты, небольшое количество которых имеется в любой мокроте, а большое - при воспалительных и особенно нагноительных процессах; эозинофилы (рис. 28) можно отличить в нативном препарате по однородной крупной блестящей зернистости, но легче их узнать при окраске. Эритроциты появляются при разрушении ткани легкого, пневмонии, застое в малом круге кровообращения, инфаркте легкого и т. д.

Плоский эпителий попадает в мокроту преимущественно из полости рта и не имеет диагностического значения. Цилиндрический мерцательный эпителий в небольшом количестве присутствует в любой мокроте, в большом - при поражениях дыхательных путей (бронхит, бронхиальная астма). Альвеолярные макрофаги - крупные клетки (в 2-3 раза больше лейкоцитов) ретикулогистио-цитарного происхождения. Цитоплазма их содержит обильные включения. Они могут быть

бесцветными (миелиновые зерна), черными от частиц угля (пылевые клетки) (рис. 29) или желтокоричневыми от гемосидерина (клетки сердечных пороков, сидерофаги). Альвеолярные макрофаги в небольшом количестве имеются в любой мокроте, содержание их увеличивается при воспалительных заболеваниях. Клетки сердечных пороков (рис. 30) встречаются при попадании эритроцитов в полость альвеол (при застое в малом круге кровообращения, особенно при митральном стенозе, инфаркте легкого, а также при крупозной пневмонии и гемосидерозе). Для более достоверно-

го их определения ставят так называемую реакцию на берлинскую лазурь: немного мокроты помещают на предметное стекло, наливают 1-2 капли 5% раствора желтой кровяной соли, через 2-3 мин - столько же 2% раствора хлористоводородной кислоты, перемешивают и накрывают покровным стеклом. Через несколько минут зерна гемосидерина оказываются окрашенными в синий цвет.

Клетки злокачественных опухолей нередко попадают в мокроту, особенно если опухоль растет эндобронхиально или распадается. В нативном препарате эти клетки выделяются своим атипизмом: они большей частью крупные, имеют уродливую форму, крупное ядро, а иногда несколько ядер. При хронических воспалительных процессах в бронхах выстилающий их эпителий метаплазируя, приобретает атипичные черты и может напоминать клетки опухоли. Поэтому определить клетки как опухолевые можно только в случае нахождения комплексов атипичных и притом полиморфных клеток, особенно если они располагаются на волокнистой основе или вместе с эластическими волокнами.

Эластические волокна (рис. 31) появляются в мокроте при распаде легочной ткани: туберкулезе, раке, абсцессе. Эластические волокна имеют вид тонких двухконтурных волоконец одинаковой на всем протяжении толщины, дихотомически ветвящихся. Они нередко встречаются кольцевидными пучками, сохраняющими альвеолярное расположение. Так как эти волокна попадаются далеко не в каждой капле мокроты, для облегчения поисков прибегают к их концентрации. Для этой цели к нескольким миллилитрам мокроты прибавляют равное или двойное количество 10% раствора едкой щелочи и нагревают до растворения слизи. При этом растворяются все форменные элементы мокроты, кроме эластических волокон. После охлаждения жидкость нтрифугируют, прибавив к ней 3-5 капель 1% спиртового раствора эозина, осадок микроскопируют. Эластические волокна сохраняют описанный выше характер и хорошо выделяются ярко-красным цветом.Актиномицеты отыскивают, выбирая из мокроты мелкие плотные желтоватые крупинки - друзы. У раздавленной под покровным стеклом в капле глицерина или щелочи друзы под микроскопом видна центральная часть, состоящая из сплетения мицелия, и окружающая ее зона лучисто расположенных колбовидных образований. При окрашивании раздавленной друзы по Граму мицелий приобретает фиолетовую, а колбочки - розовую окраску. Из других грибов, встречающихся в мокроте, наибольшее значение имеет Candida albicans, поражающий легкие при длительном лечении антибиотиками и у очень ослабленных людей. В нативном препарате находят почкующиеся дрожжеподобные клетки и ветвистый мицелий, на котором споры расположены мутовками. з кристаллов в мокроте обнаруживаются кристаллы Шарко-Лейдена: бесцветные октаэдры разной величины, напоминающие по форме стрелку компаса. Они состоят из белка, освобождающегося при распаде эозинофилов, поэтому встречаются в мокроте, содержащей много эозинофилов, причем больше их в несвежей мокроте. После легочных кровотечений, если кровь выделяется с мокротой не сразу, можно обнаружить кристаллы гематоидина - ромбические или игольчатые образования желто-бурого цвета.

Микроскопия окрашенных препаратов. Производится с целью изучения микробной флоры мокроты и некоторых ее клеток. Из них наиболее важно определение клеток злокачественных опухолей. Для этой цели мазок из найденного в нативном препарате подозрительного материала, сделанный с осторожностью, чтобы не раздавить клетки, фиксируют в метаноле или смеси Никифорова и окрашивают по Романовскому-Гимзе (или другой дифференциальной окраской). Для опулевых клеток характерны полиморфизм величины и формы, наличие отдельных очень крупных клеток, большие часто гиперхромные и наряду с ними гипохромные ядра, иногда множественные, неправильной формы с крупными ядрышками; гомогенная, иногда вакуолизированная цитоплазма в части клеток резко базофильная; нередко встречаются фигуры митоза. Наиболее убедительны комплексы полиморфных клеток указанного характера. Для распознавания эозинофильных лейкоцитов пригоден мазок, окрашенный по Романовскому-Гимзе или последовательно 1% раствором эозина (2-3 мин) и 0,2% раствором метиленового синего (V2-1 мин). Единичные эозинофилы могут встретиться в любой мокроте: в большом количестве (до 50-90% всех лейкоцитов) они обнаруживаются при бронхиальной астме, эозинофильных инфильтратах, глистных инвазиях легких и т. п.

Бактериоскопическое исследование . Для данного исследования мазки приготовляют, растирая комок мокроты между двумя предметными стеклами. Высохший мазок фиксируют, медленно проводя его 3 раза через пламя газовой горелки, и окрашивают: для поисков микобактерий туберкулеза по Цилю-Нильсену, в других случаях - по Граму.краска по Цилю-Нильсену. На фиксированный мазок накладывают равный по площади кусочек фильтровальной бумаги, наливают на нее карболовый фуксин Циля и нагревают на нежарком пламени до появления паров. Затем бумажку снимают, препарат промывают водой и опускают для обесцвечивания в 3% раствор хлористоводородной кислоты в 9° спирте (или в 5-10% раствор серной кислоты), снова хорошо промывают водой, докрашивают в течение 1/2-1 мин 0,5% раствором метиленового синего и промывают водой. Кислотоупорные бактерии прочно удерживают принятую окраску: они не обесцвечиваются и остаются красными на синем фоне остальных элементов мокроты, обесцветившихся в кислоте и приобретающих дополнительную окраску.

В случаях, когда при бактериоскопии из-за малого количества микобактерий туберкулеза (рис. 32) обнаружить их не удается, прибегают к ряду дополнительных исследований. Так, при люминесцентной микроскопии обычным образом сделанный и фиксированный мазок окрашивают люминесцирующим красителем (родамин, акридин оранжевый), а затем другим красителем (кислый фуксин, метиленовый синий), гасящим свечение фона. В ультрафиолетовом свете люминесцентного микроскопа микобактерий светятся настолько ярко, что их можно заметить, пользуясь сухим объективом (40 х), охватывающим значительно большее поле зрения, чем иммерсионный. Методы

накопления позволяют сконцентрировать микобактерий туберкулеза. Наиболее широко применяется метод флотации, при котором гомогенизированную щелочью мокроту взбалтывают с толуолом, ксилолом или бензином, мельчайшие капли которых, всплывая, захватывают микобактерий. Отстоявшийся сливкообразный слой углеводорода отсасывают пипеткой и наносят на подогретое стекло каплю за каплей на одно и то же место. После подсыхания препарат фиксируют и окрашивают по Цилю-Нильсену. Другим методом накопления является электрофорез: при прохождении постоянного тока через разжиженную мокроту микобактерий туберкулеза устремляются к катоду, с поверхности которого делают мазки и окрашивают по Цилю-Нильсену. Оаска по Граму. На фиксированный на огне мазок кладут полоску фильтровальной бумаги, на которую налива-

ют карболовый раствор генцианового фиолетового. Через 1-2 мин бумажку сбрасывают, заливают мазок на 2 мин

раствором Люголя, затем сливают его и опускают препарат в 96° спирт на 7г-1 мин (пока не перестанет отходить краситель), промывают водой и докрашивают в течение 1 мин разведенным в 10 раз раствором карболового фуксина.

В окрашенном по Граму препарате можно дифференцировать ряд микроорганизмов: грамположительные капсульный пневмококк, стрептококк и стафилококк, грамотрицательные клебсиеллу (капсульная диплобацилла Фридленде-ра), мелкую палочку Пфейффера и др. (рис. 33). Все эти ми-

кроорганизмы в небольшом количестве имеются в дыхательных путях здоровых людей и только при неблагоприятных для организма условиях могут стать патогенными и вызвать пневмонию, абсцесс легкого, бронхит и т. п. В этих случаях они обнаруживаются в мокроте в большом количестве.

Бактериологическое исследование (посев мокроты на питательные среды). Используют в том случае, когда бактериоскопическое исследование не обнаруживает предполагаемого возбудителя. Бактериологическое исследование позволяет идентифицировать вид микробов, определять их вирулентность и лекарственную устойчивость, что необходимо для правильного подбора медикаментозных средств. Наконец, в некоторых случаях, когда более простыми способами возбудителя обнаружить не удается, мокротой, полученной от больного, заражают экспериментальных животных.

Исследование плевральной жидкости . В полости плевры здорового человека имеется незначительное количество жидкости, близкой по составу к лимфе, облегчающей скольжение плевральных листков при дыхании. Объем плевральной жидкости может увеличиваться (выпот) как при нарушении крово- и лимфообращения в легких - невоспалительный выпот, или транссудат, так и при воспалительных изменениях плевры - экссудат. Экссудат может быть вызван клинически первичной инфекцией плевры или являться сопутствующим при некоторых общих инфекциях и при ряде заболеваний легких и средостения (ревматизм, инфаркт, рак и туберкулез легких, лимфогранулематоз и т. п.). Исследование плевральной жидкости проводят для следующих целей: 1)

определения ее характера (транссудат, экссудат, гной, кровь, хилезная жидкость); 2) изучения клеточного состава жидкости, дающего сведения о характере патологического процесса, а иногда (при нахождении опухолевых клеток) - и о диагнозе; 3) выявления в случае инфекционного характера поражения возбудителя и определения его чувствительности к антибиотикам. Анализ

плевральной жидкости складывается из макроскопического, физико-химического, микроскопического и в ряде случаев микробиологического и биологического исследований.

Макроскопическое исследование. Внешний вид плевральной жидкости зависит в основном от ее клеточного и частично от химического состава. Различают выпоты серозный, серозно-фибринозный, фибринозный, серозно-гнойный, гнойный, гнилостный, геморрагический, хилезный и хилезоподобный.

Транссудат и серозный экссудат прозрачны или слегка опалесцируют. Помутнение экссудата бывает обусловлено обилием лейкоцитов (серозно-гнойный и гнойный экссудат), эритроцитов (геморрагический экссудат), капелек жира (хилезный экссудат), клеточного детрита (хилезоподобный экссудат). Характер клеток распознается при микроскопии. Хилезный характер экссудата определяют пробой с эфиром - при его добавлении мутность исчезает. Такой выпот бывает обу-

словлен застоем лимфы либо разрушением грудного лимфатического протока опухолью или травмой. Хилезоподобный вид экссудат принимает при жировом перерождении клеток, содержащихся в обильном количестве. В обоих случаях жир окрашивается Суданом III.Цвет транссудата бледно-желтый, серозного экссудата - от бледно- до золотисто-желтого, при желтухе - до насыщенно-желтого. Гнойный экссудат серовато-белесоватый, зеленовато-желтый, при примеси крови - с красным оттенком или, чаще, коричневато-серый; такой же цвет у гнилостного экссудата. Геморрагический выпот в зависимости от количества крови и срока ее нахождения в плевре может иметь различные оттенки: от розового до темно-красного и бурого. При гемолизе выпот приобретает лаковый вид. Хилезный экссудат похож на разбавленное молоко.

Консттенция транссудата и экссудата, как правило, в большинстве случаев жидкая. Гнойный экссудат бывает густым, сливкообразным, иногда с трудом проходит через пункционную иглу. Гной из старых осумкованных эмпием может быть пюреобразным, крошковатым, с хлопьями фибрина.

Запахом (неприятным, зловонным) обладает только гнилостный экссудат, наблюдаемый при гангрене легкого. Этот запах обусловлен распадом белка, производимым ферментами анаэробной флоры.

Практически в любых учреждениях здравоохранения есть специальные лаборатории, где можно сдать анализы. Это помогает проводить медицинские исследования, что немаловажно для выявления заболевания и установки точного диагноза у пациента этого учреждения. Медицинская лаборатория предназначена для того, чтобы проводить разные методы исследования. Рассмотрим подробнее, какие виды анализов могут помочь определить заболевание.

Где может располагаться медицинская лаборатория?

В поликлиниках и больницах обязательно имеются такие лаборатории, именно в них производятся такие исследования:

  1. Общий клинический анализ.
  2. Иммунологический анализ.
  3. Цитологический анализ.
  4. Серологический анализ.

Отдельно стоит выделить и лаборатории в консультациях для женщин, специальных диспансерах, и даже в санаториях. Такие лаборатории называются профильными, так как они работают исключительно по своей специализации. В крупных лечебно-профилактических учреждениях имеются централизованные лаборатории. В таких местах устанавливается сложная аппаратура, поэтому вся диагностика выполняется при помощи систем, работающих автоматически.

Какие виды медицинских лабораторий существуют?

Существуют разные виды лабораторных анализов, именно от этого будут зависеть и разновидности самих лабораторий:

  • Отдельное место занимает судебно-медицинская клиническая лаборатория. В этом месте исследователям удается сделать выводы о биологических доказательствах. В таких лабораториях применяется целый комплекс мер.
  • Патологоанатомическая лаборатория занимается тем, что устанавливает причину смерти пациента, исследования производятся на основе пункционного материал, а также с помощью
  • Санитарно-гигиеническая лаборатория является подразделением санитарно-эпидемиологической станции, как правило, такие лаборатории исследуют окружающую среду.

Нужны ли лабораторные исследования пациентов?

Лабораторные которых связаны с тем, чтобы можно было поставить четкий диагноз пациенту в современных условиях, необходимы. Современные учреждения могут выполнять огромный спектр различных анализов, что благоприятно сказывается на уровне медицинского обслуживания и лечении пациентов с различными заболеваниями. Для сдачи таких анализов может пригодиться любой биологический материал, который есть у человека, например, чаще всего исследуется моча и кровь, в отдельных случаях мокрота, берется мазок и соскоб.

Для чего нужны результаты лабораторных анализов и какова их роль в медицине?

Проведение лабораторных анализов играет немаловажную роль в медицине. В первую очередь получение результатов анализов необходимо для того, чтобы уточнить диагноз и начать незамедлительное верное лечение. Также исследования помогают определить, какой вариант лечения будет оптимальным для каждого пациента индивидуально. Во многих случаях серьезные патологии удается распознать на ранних стадиях именно благодаря таким мерам. Если диагностика была проведена правильно, то врач может сделать оценку состояния своего пациента практически на 80%. Одним из самых важных материалов, который может рассказать многое о состоянии человека, является кровь. С помощью этого клинического анализа можно выявить практически все заболевания. Узнать о состоянии помогают именно расхождения с нормами, поэтому в некоторых случаях лабораторный анализ может проводиться много раз.

Какие виды лабораторных исследований существуют?

Клиническая лаборатория может проводить такие анализы:

Для чего сдается анализ крови?

Самый первый лабораторный анализ, который назначается пациенту в клинике - это анализ крови. Дело в том, что даже малейшее изменение в организме человека обязательно отразится на составе его крови. Жидкость, которую мы называем кровью, проходит через весь организм и несет много информации о его состоянии. Именно благодаря своей связи со всеми органами человека, кровь помогает составить врачу объективное мнение о состоянии здоровья.

Виды исследований крови и цель их проведения

Медицинская лаборатория может проводить несколько в основном их метод проведения и разновидность будет зависеть от того, с какой целью проводятся такие исследования, поэтому все виды анализа крови стоит рассмотреть более подробно:

  • Самым распространенным является общее клиническое исследование, которое проводиться с целью выявления конкретного заболевания.
  • Биохимическое исследование крови дает возможность получить полную картину о работе органов, а также вовремя определить недостаток жизненно важных микроэлементов.
  • Кровь берется для того, чтобы можно было исследовать гормоны. Если в секретах желез происходят самые малейшие изменения, то это может обернуться в дальнейшем серьезными патологиями. Клиническая лаборатория проводит анализы на гормоны, что позволяет наладить работу репродуктивной функции человека.
  • С помощью ревмопроб проводится целый комплекс лабораторных исследований крови, которые указывают на состояние иммунной системы пациента. Часто такого рода диагностика назначается людям, которые жалуются на боли в суставах, сердце.
  • Серологическое исследование крови позволяет определить, сможет ли организм справиться тем или иным вирусом, а также этот анализ позволяет выявить наличие любых инфекций.

Для чего проводятся лабораторные исследования мочи?

Лабораторный анализ мочи основывается на изучении физических качеств таких, как количество, цвет, плотность и реакция. С помощью определяется белок, наличие глюкозы, кетоновые тела, билирубин, уробилиноиды. Особое внимание уделяется изучению осадка, потому что именно там можно обнаружить частички эпителия и примеси крови.

Основные виды анализа мочи

Основной диагностикой является общий анализ мочи, именно эти исследования дают возможность изучить физические и химические свойства вещества и на основании этого сделать определенные выводы, но кроме этого диагностирования существует и много других анализов:

Как производится лабораторный анализ на цитологию?

Чтобы определить, есть ли раковые клетки у женщин в организме, то проводит лаборатория анализы на цитологию. В таком случае врач-гинеколог может у пациентки взять соскоб с шейки матки. Чтобы произвести такой анализ, необходимо к нему подготовиться, для этого врач-гинеколог проконсультирует, что следует делать, чтобы анализ не дал ложные результаты. Часто это клиническое исследование рекомендуют проходить всем женщинам старше 18 лет два раза в год, чтобы избежать образования опухолей.

Как производится анализ мазка из зева?

В случае если человек часто страдает заболеваниями верхних дыхательных путей, врач может ему назначить сдачу клинического анализа, который называется мазок из зева, делается он для того, чтобы можно было вовремя распознать патологическую флору. С помощью такого исследования можно узнать точное количество болезнетворных микробов и начать своевременное лечение антибактериальным препаратом.

Как производится контроль над качеством исследуемых анализов?

Лабораторные анализы крови, мочи обязательно должны быть точными, так как, отталкиваясь от этого, врач сможет назначить дополнительную диагностику или лечение. Сказать о результатах анализов можно только после того, как будет произведено сопоставление контрольных образцов с результатами проведенных измерений. При проведении клинического исследования применяются такие вещества: сыворотка крови, стандартные водные растворы, различный биологический материал. Дополнительно могут использоваться материалы искусственного происхождения, например, патогенные грибки и микробиологические, специально выращенные культуры.

Как оцениваются результаты анализов?

Чтобы дать полную и точную оценку результатов клинических анализов часто применяется такой метод, когда лаборатория анализы фиксирует в специальной карте и ставит в ней ежедневные отметки. Строится карта на протяжении определенного времени, например, в течение двух недель изучается контрольных материал, все изменения, которые наблюдаются, регистрируются в карте.

В сложных случаях врачу требуется постоянно держать лабораторный контроль над состоянием своего пациента, например, это необходимо, если пациент готовится к серьезной операции. Чтобы врач не ошибся в результатах, он должен обязательно знать границы между нормой и патологией в анализах своего подопечного. Биологические показатели могут немного меняться, но есть такие, на которых не стоит сильно заострять внимание. В других случаях, если показатели меняются всего на 0,5 единицы, этого вполне достаточно, чтобы в организме человека произошли серьезные необратимые изменения.

Как видим, лабораторная диагностика, анализы играют немаловажную роль в жизни каждого человека, а также в развитии медицины, ведь с помощью полученных клинических результатов многим пациентам удается спасти жизнь.

Клинический анализ крови (общий анализ крови) — это лабораторное исследование, позволяющее оценить качественный и количественный состав крови. Данное исследование включает в себя определение следующих показателей:

  • количество и качество эритроцитов,
  • цветовой показатель,
  • величина гематокрита,
  • содержание гемоглобина,
  • скорость оседания эритроцитов,
  • количество тромбоцитов,
  • количество лейкоцитов, а также процентное соотношение различных видов лейкоцитов в периферической крови.

Подробно о клиническом анализе крови можно прочитать в этой статье .

Пункционная диагностика

Морфологический состав крови не всегда отражает изменения, возникающие в кроветворных органах. Поэтому с целью верификации диагноза и количественной оценки функции костно-мозгового кроветворения у гематологических больных, а также с целью контроля за эффективностью лечения проводят морфологическое исследование костного мозга.

Для этого используют 2 метода:

  1. Стернальная пункция — метод, предложенный в 1927 году М.И. Аринкиным, технически более прост, не требует присутствия хирурга и может выполняться в амбулаторных условиях.
  2. Трепанобиопсия гребешка подвздошной кости — метод является более точным, поскольку получаемые срезы костного мозга полностью сохраняют архитектонику органа, позволяют оценить диффузный или очаговый характер изменений в нем, исследовать соотношение кроветворной и жировой тканей, выявить атипичные клетки.

Основными показаниями для исследования костного мозга являются алейкемические формы лейкозов, эритремия, миелофиброз и другие миелопролиферативные и лимфопролиферативные заболевания, гипо- и апластические анемии.

В настоящее время для детального анализа гемопоэза перспективным направлением в теоретическом и практическом плане является метод клонирования клеточных кроветворных популяций. Этот метод позволяет клонировать различные клеточные кроветворные популяции, прогнозировать течение заболевания, осуществлять контроль за эффективностью проводимой терапии.

Клональные методы широко используются при аутологичной и аллогенной трансплантации костного мозга человека для оценки качества донорского трансплантата и контроля за эффективностью его приживания у реципиента.

Исследование системы гемостаза

Система гемостаза представляет собой сложную многофакторную биологическую систему, основными функциями которой являются остановка кровотечения путем поддержания целостности кровеносных сосудов и достаточно быстрого их тромбирования при повреждениях и сохранение жидкого состояния крови.

Эти функции обеспечиваются следующими системами гемостаза:

  • стенками кровеносных сосудов;
  • форменными элементами крови;
  • многочисленными плазменными системами, включающими свертывающую, противосвертывающую и другие.

При повреждении сосудов запускаются два основных механизма остановки кровотечения:

  • первичный, или сосудисто-тромбоцитарный, гемостаз, обусловленный спазмом сосудов и их механической закупоркой агрегатами тромбоцитов с образованием "белого тромба";
  • вторичный, или коагуляционный, гемостаз, протекающий с использованием многочисленных факторов свертывания крови и обеспечивающий плотную закупорку поврежденных сосудов фибриновым тромбом (красным кровяным сгустком).

Методы исследования сосудисто-тромбоцитарного гемостаза

Наиболее распространенными являются следующие показатели и методы их определения:

Резистентность капилляров. Из методов оценки ломкости капилляров чаще всего используется манжеточная проба Румпель — Лееде — Кончаловского. Через 5 минут после наложения манжеты для измерения АД на плечо и создания в ней давления, равного 100 мм рт. ст., ниже манжеты появляется определенное количество петехий. Нормой является образование в этой зоне менее 10 петехий. При повышении проницаемости сосудов или тромбоцитопении число петехий в этой зоне превышает 10 (положительная проба).

Время кровотечения. Данный тест основан на изучении длительности кровотечения из участка прокола кожи. Нормативные показатели длительности кровотечения при определении по методу Дьюке — не выше 4 минут. Увеличение длительности кровотечения наблюдается при тромбоцитопениях или/и тромбоцитопатиях.

Определение количества тромбоцитов. Число тромбоцитов у здорового человека в среднем составляет 250 тыс. (180—360 тыс.) в 1 мкл крови. В настоящее время для определения числа тромбоцитов существует несколько лабораторных технологий.

Ретракция сгустка крови. Для ее оценки чаще всего используют непрямой метод: измеряют объем сыворотки, выделяемой из сгустка крови при ее ретракции по отношению к объему плазмы в исследуемой крови. В норме показатель равен 40 — 95%. Его уменьшение наблюдается при тромбоцитопениях.

Определение ретенции (адгезивности) тромбоцитов. Чаще используется метод, основанный на подсчете числа тромбоцитов в венозной крови до и после ее пропускания с определенной скоростью через стандартную колонку со стеклянными шариками. У здоровых людей индекс ретенции составляет 20 — 55%. Уменьшение показателя наблюдается при нарушении адгезии тромбоцитов у больных с врожденными тромбоцитопатиями.

Определение агрегации тромбоцитов. Наиболее интегральную характеристику агрегационной способности тромбоцитов можно получить при спектрофотометрической или фотометрической количественной регистрации процесса агрегации с помощью агрегографа. В основе метода лежит графическая регистрация изменения оптической плотности тромбоцитарной плазмы при перемешивании ее со стимуляторами агрегации. В качестве стимуляторов можно использовать АДФ, коллаген, бычий фибриноген или ристомицин.

Коагуляционный гемостаз

Процесс свертывания крови принято условно разделять на две основные фазы:

  1. фаза активации — многоступенчатый этап свертывания, который завершается активацией протромбина (фактор II) тромбокиназой c превращением его в активный фермент тромбин (фактор IIa);
  2. фаза коагуляции — конечный этап свертывания, в результате которого под влиянием тромбина фибриноген (фактор I) превращается в фибрин.

Для исследования процессов гемокоагуляции используются следующие показатели:

  • время свертывания крови,
  • активированное время рекальцификации плазмы (норма с хлоридом кальция 60 — 120 с, с коалином 50 — 70 с),
  • активированное частичное тромбопластиновое время (АЧТВ ) (норма 35 — 50 с),
  • протромбиновое время (ПТВ ) (норма: 12 — 18 с),
  • тромбиновое время (норма 15 — 18 с),
  • протромбиновый индекс (ПТИ ) (норма 90 — 100%),
  • аутокоагуляционный тест,
  • тромбоэластографию.

Преимуществом среди этих методов обладают три теста: ПТИ, АЧТВ и международное нормализованное отношение (МНО ), так как они позволяют судить не только о состоянии всей свертывающей системы крови, но и недостаточности отдельных факторов.

ПТИ (%) = Стандартное ПТВ / ПТВ у обследуемого пациента

МНО - показатель, который рассчитывается при определении ПТВ. Показатель МНО был введён в клиническую практику, чтобы стандартизировать результаты теста ПТВ, поскольку результаты ПТВ варьируют в зависимости от типа реагента (тромбопластина), используемого в разных лабораториях.

МНО = ПТВ пациента / ПТВ контрольной пробы

Определение МНО гарантирует возможность сравнения результатов при определении ПТВ, обеспечивая точный контроль терапии непрямыми антикоагулянтами. Рекомендуются два уровня интенсивности лечения непрямыми антикоагулянтами: менее интенсивный — показатель МНО равен 1,5 — 2,0 и более интенсивный — МНО равен 2,2 — 3,5.

При исследовании свертывающей системы крови важное значение имеет определение содержания фибриногена (норма 2 — 4 г/л). В патологии этот показатель может уменьшаться (ДВС-синдром, острый фибринолиз, тяжелое поражение печени) или увеличиваться (острые и хронические воспалительные заболевания, тромбозы и тромбоэмболии). Большое значение имеет также определение высокомолекулярных производных фибриногена, растворимых фибрин-мономерных комплексов, продуктов деградации фибрина.

В условиях физиологической нормы ограничение процессов плазмокоагуляции осуществляют антикоагулянты, которые подразделяются на две группы:

  1. первичные, постоянно содержащиеся в крови — антитромбин III, гепарин, протеин С, α 2 -макроглобулин и др.;
  2. вторичные, образующиеся в процессе свертывания и фибринолиза.

Среди этих факторов важнейшим является антитромбин III, на долю которого приходится 3/4 активности всех физиологических ингибиторов коагуляции. Дефицит этого фактора приводит к тяжелым тромботическим состояниям.

В крови даже при отсутствии повреждения сосудов постоянно происходит образование небольшого количества фибрина, расщепление и удаление которого осуществляет система фибринолиза. Основными методами исследования фибринолиза являются:

  • исследование времени и степени лизиса сгустков крови или эуглобулиновой фракции плазмы (норма 3-5 ч, с коалином - 4-10 мин);
  • определение концентрации плазминогена, его активаторов и ингибиторов;
  • выявление растворимых фибринмономерных комплексов и продуктов деградации фибриногена/фибрина.

Дополнительные методы исследования крови и мочи

При некоторых гематологических заболеваниях в крови можно определить аномальные белки — парапротеины. Они относятся к группе иммуноглобулинов, но отличаются от них по своим свойствам.

При миеломной болезни на электрофореграмме определяется гомогенная и интенсивная полоса М в области γ-, β- или (реже) α 2 -глобулиновых фракций. При болезни Вальденстрема пик аномальных макроглобулинов располагается в области между β- и γ-глобулиновыми фракциями. Но наиболее информативным методом для раннего выявления аномальных парапротеинов является иммуноэлектрофорез. У 60% больных с миеломной болезнью в моче, особенно на ранних стадиях, можно выявить низкомолекулярный протеин — белок Бенс-Джонса.

Ряд гематологических заболеваний характеризуется изменением осмотической резистентности эритроцитов. Метод основан на количественном определении степени гемолиза в гипотонических растворах хлорида натрия различной концентрации: от 0,1 до 1%. Понижение осмотической резистентности встречается при микросфероцитарной и аутоиммунной гемолитических анемиях, а повышение — при механической желтухе и талассемии.

ОБЩИЕ И ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ

Для установления дерматологического диагноза часто требуются дополнительные исследования, включающие:

Эпикутанные и интракутанные кожные тесты при аллергических состояниях;

Микологические, бактериологические, вирусологические, серологические тесты при дерматозах, вызванных микроорганизмами;

Иммунофлюоресцентные тесты при аутоиммунных заболеваниях: ангиографические исследования при сосудистых нарушениях;

Проктологическое исследование при анальных симптомах;

Биохимические анализы;

Рентгенологическое исследование, анализы крови и мочи;

Гистологическое исследование.

Кожные тесты применяют для идентификации аллергенов у больных с аллергическим контактным дерматитом. Эти тесты определяют отсроченный (тип IV) гиперчувствительный ответ к контактным аллергенам и, таким образом, отличаются от скарификационных и внутрикожных, которые обнаруживают немедленный (тип I) гиперчувствительный ответ. С помощью кожных тестов (капельных, аппликационных) может быть изучен широкий спектр возможных аллергенов. Применяются стандартные наборы обычно сенсибилизирующих химических веществ, растворенных в воде или эфире. Смоченные ими салфетки накладываются на кожу под окклюзионную повязку, которую оставляют на 48 ч, а затем повязки удаляют и проводят оценку реакции. Места тестирования должны повторно осматриваться еще через 48 ч, поскольку реакция ГЗТ иногда требует для своего развития более 48 ч. Позитивные тесты требуют своей клинической интерпретации. Окончательное заключение может быть сделано только с учетом клинической картины и анамнеза заболевания.

Для микроскопического исследования на патогенные грибы используют соскобы чешуек (с помощью скальпеля) и кусочки ногтей, обломки волос, которые переносятся на стекло и обрабатываются щелочью (КОН) для дальнейшего исследования. Мазки и отделяемое из уретры исследуются на гонококки и других возбудителей ИППП; при диагностике акантолитической пузырчатки исследуют мазки-отпечатки с эрозивных поверхностей на клетки Тцанка. Для подтверждения диагноза чесотки специальными методами в соскобах кожи обнаруживают чесоточного клеща; для выявления бледных трепонем проводят исследование тканевого сока со дна твердого шанкра в темном поле микроскопа. Для уточнения возбудителей микозов, пиодермии, ИППП проводят культуральное исследование.

Иммунофлюоресцентные тесты. Для диагностики пузырных дерматозов используют реакции прямой и непрямой иммунофлюоресценции. С их помощью определяют аутоантитела, направленные против кожи. Например, антитела класса IgG в межклеточной склеивающей субстанции шиповатого слоя эпидермиса при вульгарной пузырчатке обнаруживают с помощью реакции прямой иммунофлюоресценции с использованием клинически непораженной кожи больного и меченных флюорохромом антител класса IgG.

Гистологическим исследованием кожи может быть подтвержден или исключен предположительный дерматологический диагноз. Некоторые дерматозы требуют гистологических исследований для определения стадии заболевания (грибовидный микоз) или глубины опухоли, что имеет большое значение для прогноза и последующего лечения.

Выбор места биопсии имеет важное значение для последующего гистологического исследования. Важно выбрать типичный элемент, наиболее диагностически ценный. Для этого больше всего подходят свежие первичные элементы. При диссеминированных высыпаниях следует выбрать очаг, удаление которого приведет к наименьшим косметическим и функциональным дефектам. При взятии биопсии следует помнить о возможности развития на месте удаленного очага келоидного рубца, особенно если биопсия берется с элемента в области шеи и грудины. Кроме того, следует учитывать, что заживление раны может быть замедленным, если биопсия берется с области лодыжки или голени, особенно у больных с нарушенным кровообращением.

Процедура биопсии проводится под местной анестезией. Маленький элемент удаляют полностью. У более крупного обычно удаляют периферическую часть вместе с краем окружающей нормальной кожи. Наилучшим с точки зрения диагностики и косметических последствий является проведение клиновидной биопсии с помощью скальпеля. Материал для гистологического исследования может также быть взят с помощью электрохирургии или пункционной биопсии.

Исключения из стандартной гистологической процедуры. Стандартные фиксирующие средства не применяются при криостатном методе быстрых срезов, бактериологических исследованиях биопсийного материала (например, для исключения туберкулеза кожи), прямого нммунофлюоресиснтного исследования (буллезные дерматозы, красная волчанка), а также при гистохимических, цитохимических, иммуноцитологических исследованиях (лимфомы) и электронной микроскопии.

Гистологическое заключение выносится с учетом места взятия биопсии, возраста больного, анамнеза болезни, клинической картины.

Для диагностики большинства заболеваний кожи материал для исследования может быть получен путем пункционной биопсии диаметром от 2 до 8 мм (обычно 4 мм). Для обычного гистологического исследования и большинства специальных окрасок биоптат помещают в формалин. Для электронной микроскопии используется буфер – глутаральдегид. При иммунофлюоресцентной технике образец должен быть либо немедленно заморожен, либо помещен в специальный буферный транспортный раствор.

Электронная микроскопия кожи показана реже, но очень помогает при диагностике редких заболеваний – разновидностей буллезного эпидермолиза и др.

Из книги Акушерство и гинекология: конспект лекций автора А. А. Ильин

Из книги Пропедевтика внутренних болезней автора А. Ю. Яковлева

автора А. Ю. Яковлева

Из книги Пропедевтика внутренних болезней: конспект лекций автора А. Ю. Яковлева

Из книги Пропедевтика детских болезней: конспект лекций автора О. В. Осипова

автора Павел Николаевич Мишинькин

Из книги Общая хирургия: конспект лекций автора Павел Николаевич Мишинькин

Из книги Общая хирургия: конспект лекций автора Павел Николаевич Мишинькин

Из книги Деменции: руководство для врачей автора Н. Н. Яхно

Из книги Анализы. Полный справочник автора Михаил Борисович Ингерлейб

Из книги Терапевтическая стоматология. Учебник автора Евгений Власович Боровский

Из книги Сахарный диабет. Самые эффективные методы лечения автора Юлия Попова

Из книги Нет дисбактериозу! Умные бактерии для здоровья ЖКТ автора Елена Юрьевна Заостровская

Из книги Симфония для позвоночника. Профилактика и лечение заболеваний позвоночника и суставов автора Ирина Анатольевна Котешева

Из книги Как избавиться от боли в спине автора Ирина Анатольевна Котешева

Из книги Боли в спине и суставах. Что делать? автора Ирина Анатольевна Котешева

Наряду с применяемыми в офтальмологической практике инструментальными методами обследования, лабораторные исследования могут проводиться с целью повышения точности диагностики, выявления индивидуальных особенностей течения процесса, оценки его тяжести и возможных осложнений.

Ю.С. Краморенко, д.м.н., профессор,
КазНИИ глазных болезней, г. Алматы

Современные требования к ранней диагностике офтальмопатологии диктуют необходимость обоснования подходов к проведению того или иного вида лабораторных исследований, разработки диагностических программ (алгоритмов) с учетом международных требований при определении стандартов (протоколов) диагностики и лечения больных.

Лабораторные исследования - важная составляющая лечебно-диагностического процесса, дающая врачу-клиницисту всестороннюю информацию о состоянии здоровья пациента, что, в свою очередь, способствует постановке наиболее точного диагноза и контролю эффективности проводимого лечения. Изменения в периферической крови являются следствием многозвенных межсистемных процессов, отражающих патогенетические, компенсаторные, адаптивные сдвиги, сопутствующие развитию заболевания.

При обращении к глазному врачу районной или городской поликлиники пациенту, при необходимости, проводится первый этап лабораторного обследования, включающий общий анализ крови (ОАК) - широко распространенное исследование на уровне ПМСП при различных видах офтальмопатологии.

К задачам второго этапа лабораторного обследования относится проведение биохимических исследований, необходимых для постановки клинического диагноза и оценки степени тяжести заболевания, определения характера и объема лечебных мероприятий, контроля эффективности лечения, прогнозирования развития патологического процесса, а также для направления в хирургический стационар.

Клетки крови - это главные участники ранней ответной реакции на любые изменения в тканях, являясь чувствительным индикатором состояния организма. Общий анализ крови позволяет оценить насыщенность крови гемоглобином, который обеспечивает транспортировку кислорода в крови, определить относительное (в процентах) и абсолютное количество клеток крови (эритроцитов, лейкоцитов, тромбоцитов, эозинофилов и других), скорость оседания эритроцитов (СОЭ).

Биохимический анализ крови является неотъемлемым методом лабораторной диагностики нарушения обменных процессов при различных заболеваниях.

Углеводный обмен отражает уровень глюкозы крови - весьма доступный, но нестабильный показатель, зависящий от ряда причин, в том числе от эмоционального состояния пациента, в цельной крови он соответствует - 3,05-6,3 ммоль/л.

Более значимым, как показатель риска в диагностике развития глазных осложнений сахарного диабета, является определение гликозилированного гемоглобина (HbA1C) крови, уровень которого отражает концентрацию глюкозы как натощак, так и после еды, в норме он составляет 4-6% от общего количества гемоглобина и соответствует нормальному содержанию сахара в 3-5 ммоль/л.

Рост доли гликозилированного гемоглобина на 1% связан с увеличением уровня глюкозы в плазме крови, в среднем, на 2 ммоль/л. Определение гликозилированного гемоглобина является одним из методов, способных нивелировать отрицательное влияние метаболических нарушений и отражает степень компенсации углеводного обмена в течение 3 месяцев. Это наиболее доступный маркер качества предоперационной подготовки для пациентов, страдающих сахарным диабетом. Результаты исследования гликозилированного гемоглобина показали, что у здоровых лиц его содержание в крови не зависит от пола и возраста.

Липидный обмен определяется такими показателями, как: холестерин ОХ - 5,2 ммоль/л, холестерин липопротеидов высокой плотности (ХС ЛПВП) - более 1,45, холестерин липопротеидов низкой плотности (ХС ЛПНП) - 3,37 ммоль/л, коэффициент атерогенности - до 3 единиц, триглицериды (ТГ) - 0,68-2,3 ммоль/л. У здоровых лиц эти показатели определяются в указанных пределах.

Традиционно липидный спектр включает определение общего холестерина и ХС в липопротеиновых комплексах. Определение показателей липидного обмена в минимальном объеме необходимо для постановки клинического диагноза при различной сосудистой патологии и оценки степени тяжести заболевания, так как дислипидемия является одним из пусковых механизмов повреждения сосудов. Повышение отношения ЛПНП к ЛПВП и индекса атерогенности (отношение ХС-ХС ЛПВП/ХС ЛПВП) рассматривается как достоверный фактор риска атерогенных тенденций в развитии сосудистой патологии. Повышение уровня холестерина в составе ЛПНП считается фактором риска развития сосудистых осложнений СД. Маркерами атерогенных липопротеидов и метаболического синдрома являются триглицериды - эфиры глицерина и жирных кислот (полиненасыщенных и мононенасыщенных), основной компонент липопротеидов очень низкой плотности (ЛПОНП). У больных с повышенной концентрацией триглицеридов выявляются выраженные сосудистые изменения. Установлено, что гипертриглицеридемия функционально связана с гипергликемией.

Белки крови выполняют многообразные функции, образуя комплексы с углеводами, липидами и другими субстанциями, связывают токсины, что можно рассматривать как важный механизм детоксикации организма.

Электрофорез белков является одним из наиболее информативных лабораторных тестов. Протеинограмма крови дает ценные сведения о состоянии белковой системы, реагирующей на метаболические изменения в организме под влиянием тех или иных воздействий. Изменение белковых фракций указывает на тяжесть, длительность и остроту поражения, эффективность проводимой терапии и на прогноз заболевания.

Особое место среди белков острой фазы воспаления занимает C-реактивный белок (СРБ), относящийся к бета-глобулинам, как биохимический маркер активности течения заболевания наиболее доступный для определения на любом уровне. СРБ, взаимодействуя с Т-лимфоцитами, фагоцитами и тромбоцитами, регулирует их функции при воспалении, стимулирует иммунные реакции.

С-реактивный белок появляется в крови уже через 4-6 часов от начала воспалительного процесса (до увеличения количества гранулоцитов) и достигает пика через 1-2 дня, при успешном выздоровлении его уровень быстро снижается. С переходом в хроническую фазу заболевания С-реактивный белок исчезает из крови и снова появляется при обострении процесса. По диагностической значимости сопоставим с СОЭ, но уровень С-реактивного белка растет и снижается быстрее.

Повышение уровня С-реактивного белка наблюдается при острых бактериальных и вирусных инфекциях, злокачественных новообразованиях и аутоиммунных заболеваниях, установлена прямая связь между уровнем СРБ и риском осложнений со стороны периферических сосудов.

После хирургических вмешательств в остром периоде уровень СРБ повышается, однако начинает быстро снижаться в отсутствие бактериальной инфекции, поэтому определение СРБ в послеоперационном периоде может применяться для контроля за опасностью возникновения такой инфекции. Поскольку уровень С-реактивного белка в течение суток может резко меняться, его следует определять в динамике. В сыворотке здорового человека СРБ отсутствует.

Клинико-лабораторные исследования при некоторых социально значимых заболеваниях глаз, связанных с нарушением обменных процессов, определили необходимость их проведения и мониторинга в процессе лечения и диспансерного наблюдения.

Диабетическая ретинопатия. Многообразие клинических проявлений сахарного диабета (СД) диктует необходимость лабораторного исследования с целью выявления особенностей метаболизма развития заболевания, характеризующегося нарушением углеводного, жирового, белкового и других видов обмена веществ, и определения наиболее информативных показателей, которые могут быть использованы в качестве диагностических и прогностических тестов, критериев оценки эффективности лечения.

Лабораторные исследования при ДР должны включать: определение уровня глюкозы и гликозилированного гемоглобина крови в динамике; исследование липидограммы (ХС, ХС ЛПВП, ХС ЛПНП, ТГ).

Динамическое определение уровня гликемии дает возможность судить об уровне метаболических нарушений, степени их коррекции. Уровень гликозилированного гемоглобина крови необходимо контролировать каждые 3 месяца.

Возрастная макулярная дегенерация (ВМД) - заболевание, которое развивается на фоне генерализованного нарушения церебральной гемодинамики, общей и местной сосудистой патологии, приводящей к ухудшению кровоснабжения и развитию трофических процессов в глазу. Дистрофические процессы в сетчатой оболочке глаза отражают нарушения обмена веществ во всем организме.

Исследование липидограммы - показало, что у больных ВМД пожилого возраста показатели липидного обмена крови отличались от физиологической нормы в среднем на 20-30%. Установлено повышение содержания общего холестерина ХС липопротеидов низкой плотности в 1,2 раза относительно показателей контрольной группы, тогда как уровень ХС липопротеидов высокой плотности был ниже в 1,7 раза по сравнению с величиной контроля, соответственно, значительно повышался индекс атерогенности - в 3,1 раза. Выраженность нарушений возрастала с увеличением длительности и степени тяжести заболевания. Выявлена прямая корреляционная связь между содержанием триглицеридов и количеством ОХ, обратная - между уровнем ЛПНП и ЛПВП.

Глаукома. Проводимое в КазНИИ глазных болезней комплексное клинико-лабораторное исследование метаболических и иммунологических факторов, играющих важную роль в патогенезе первичной глаукомы, выявило активацию процессов перекисного окисления липидов на фоне снижения антиоксидантной защиты, проявляющейся в дисбалансе в системе антиокислительных ферментов эритроцитов и лимфоцитов (каталазы, супероксиддисмутазы и глутаионредуктазы) и снижении уровня природных антиоксидантов в крови (уменьшение содержания витаминов А, Е, С, рибофлавина). Эти нарушения были одинаково выражены как при открытоугольной, так и при закрытоугольной формах глаукомы, но в наибольшей степени в период острого приступа.

У больных с выраженной глаукомой уровень холестерина выше нормы выявлен в 75% случаев, преимущественно за счет повышения уровня ХС ЛПНП, высокий уровень триглицеридов, а также уменьшение содержания альбуминов и увеличение - бета и гамма-глобулинов.

Таким образом, диагностика офтальмопатологии, основанная на клинико-лабораторных данных, направлена на проведение соответствующего лечения для улучшения его результатов. Динамическое исследование биохимических и гематологических показателей в процессе лечения дает возможность оценить его эффективность, так как отсутствие положительных сдвигов в уровне исследуемых показателей свидетельствует о недостаточном эффекте проводимого лечения, прогрессировании процесса. Комплекс клинико-лабораторных методов обследования офтальмологических больных расширяет возможности ранней диагностики, что позволяет определить схему лечения патогенетической направленности.

20 июня 2018
«Казахстанский фармацевтический вестник» №12 (542), июнь 2018 г.