Опыт фредерика с перекрестным кровообращением собак. Опыт Фредерика и Холдена (влияние углекислого газа на дыхательный центр)

По современным представлениям дыхательный центр – это совокупность нейронов, обеспечивающих смену процессов вдоха и выдоха и адаптацию системы к потребностям организма. Выделяют несколько уровней регуляции:

1) спинальный;

2) бульбарный;

3) супрапонтиальный;

4) корковый.

Спинальный уровень представлен мотонейронами передних рогов спинного мозга, аксоны которых иннервируют дыхательные мышцы. Этот компонент не имеет самостоятельного значения, так как подчиняется импульсам из вышележащих отделов.

Нейроны ретикулярной формации продолговатого мозга и моста образуют бульбарный уровень . В продолговатом мозге выделяют следующие виды нервных клеток:

1) ранние инспираторные (возбуждаются за 0,1–0,2 с до начала активного вдоха);

2) полные инспираторные (активируются постепенно и посылают импульсы всю фазу вдоха);

3) поздние инспираторные (начинают передавать возбуждение по мере угасания действия ранних);

4) постинспираторные (возбуждаются после торможения инспираторных);

5) экспираторные (обеспечивают начало активного выдоха);

6) преинпираторные (начинают генерировать нервный импульс перед вдохом).

Аксоны этих нервных клеток могут направляться к мотонейронам спинного мозга (бульбарные волокна) или входить в состав дорсальных и вентральных ядер (протобульбарные волокна).

Нейроны продолговатого мозга, входящие в состав дыхательного центра, обладают двумя особенностями:

1) имеют реципрокные отношения;

2) могут самопроизвольно генерировать нервные импульсы.

Пневмотоксический центр образован нервными клетками моста. Они способны регулировать активность нижележащих нейронов и приводят к смене процессов вдоха и выдоха. При нарушении целостности ЦНС в области ствола мозга понижается частота дыхания и увеличивается продолжительность фазы вдоха.

Супрапонтиальный уровень представлен структурами мозжечка и среднего мозга, которые обеспечивают регуляцию двигательной активности и вегетативной функции.

Корковый компонент состоит из нейронов коры больших полушарий, влияющих на частоту и глубину дыхания. В основном они оказывают положительное влияние, особенно на моторные и орбитальные зоны. Кроме того, участие коры больших полушарий говорит о возможности самопроизвольно изменять частоту и глубину дыхания.

Таким образом, в регуляции дыхательного процесса принимают различные структуры коры больших полушарий, но ведущую роль играет бульбарный отдел.

2. Гуморальная регуляция нейронов дыхательного центра

Впервые гуморальные механизмы регуляции были описаны в опыте Г. Фредерика в 1860 г., а затем изучались отдельными учеными, в том числе И. П. Павловым и И. М. Сеченовым.

Г. Фредерик провел опыт перекрестного кровообращения, в котором соединил сонные артерии и яремные вены двух собак. В результате голова собаки № 1 получала кровь от туловища животного № 2, и наоборот. При пережатии трахеи у собаки № 1 произошло накопление углекислого газа, который поступил в туловище животного № 2 и вызвал у него повышение частоты и глубины дыхания – гиперпноэ. Такая кровь поступила в голову собаки под № 1 и вызвала понижение активности дыхательного центра вплоть до остановки дыхания гипопноэ и апопноэ. Опыт доказывает, что газовый состав крови напрямую влияет на интенсивность дыхания.

Возбуждающее действие на нейроны дыхательного центра оказывают:

1) понижение концентрации кислорода (гипоксемия);

2) повышение содержания углекислого газа (гиперкапния);

3) повышение уровня протонов водорода (ацидоз).

Тормозное влияние возникает в результате:

1) повышения концентрации кислорода (гипероксемии);

2) понижения содержания углекислого газа (гипокапнии);

3) уменьшения уровня протонов водорода (алкалоза).

В настоящее время учеными выделено пять путей влияния газового состава крови на активность дыхательного центра:

1) местное;

2) гуморальное;

3) через периферические хеморецепторы;

4) через центральные хеморецепторы;

5) через хемочувствительные нейроны коры больших полушарий.

Местное действие возникает в результате накопления в крови продуктов обмена веществ, в основном протонов водорода. Это приводит к активации работы нейронов.

Гуморальное влияние появляется при увеличении работы скелетных мышц и внутренних органов. В результате выделяются углекислый газ и протоны водорода, которые стоком крови поступают к нейронам дыхательного центра и повышают их активность.

Периферические хеморецепторы – это нервные окончания с рефлексогенных зон сердечно-сосудистой системы (каротидные синусы, дуга аорты и т. д.). Они реагируют на недостаток кислорода. В ответ начинают посылаться импульсы в ЦНС, приводящие к увеличению активности нервных клеток (рефлекс Бейнбриджа).

В состав ретикулярной формации входят центральные хеморецепторы , которые обладают повышенной чувствительностью к накоплению углекислого газа и протонов водорода. Возбуждение распространяется на все зоны ретикулярной формации, в том числе и на нейроны дыхательного центра.

Нервные клетки коры больших полушарий также реагируют на изменение газового состава крови.

Таким образом, гуморальное звено играет важную роль в регуляции работы нейронов дыхательного центра.

3. Нервная регуляция активности нейронов дыхательного центра

Нервная регуляция осуществляется в основном рефлекторными путями. Выделяют две группы влияний – эпизодические и постоянные.

К постоянным относятся три вида:

1) от периферических хеморецепторов сердечно-сосудистой системы (рефлекс Гейманса);

2) от проприорецепторов дыхательных мышц;

3) от нервных окончаний растяжений легочной ткани.

В процессе дыхания мышцы сокращаются и расслабляются. Импульсы от проприорецепторов поступают в ЦНС одновременно к двигательным центрам и нейронам дыхательного центра. Происходит регуляция работы мышц. При возникновении каких-либо препятствий дыхания инспираторные мышцы начинают еще больше сокращаться. В результате устанавливается зависимость между работой скелетных мышц и потребностями организма в кислороде.

Рефлекторные влияния от рецепторов растяжения легких были впервые обнаружены в 1868 г. Э. Герингом и И. Брейером. Они обнаружили, что нервные окончания, расположенные в гладкомышечных клетках, обеспечивают три вида рефлексов:

1) инспираторно-тормозные;

2) экспираторно-облегчающие;

3) парадоксальный эффект Хеда.

При нормальном дыхании возникает инспираторно-тормозные эффекты. Во время вдоха легкие растягиваются, и импульсы от рецепторов по волокнам блуждающих нервов поступают в дыхательный центр. Здесь происходит торможение инспираторных нейронов, что приводит к прекращению активного вдоха и наступлению пассивного выдоха. Значение этого процесса заключается в обеспечении начала выдоха. При перегрузке блуждающих нервов смена вдоха и выдоха сохраняется.

Экспираторно-облегчающий рефлекс можно обнаружить только в ходе эксперимента. Если растягивать легочную ткань в момент выдоха, то наступление следующего вдоха задерживается.

Парадоксальный эффект Хеда можно осуществить в ходе опыта. При максимальном растяжении легких в момент вдоха наблюдается дополнительный вдох или вздох.

К эпизодическим рефлекторным влияниям относятся:

1) импульсы от ирритарных рецепторов легких;

2) влияния с юкстаальвеолярных рецепторов;

3) влияния со слизистой оболочки дыхательных путей;

4) влияния от рецепторов кожи.

Ирритарные рецепторы расположены в эндотелиальном и субэндотелиальном слое дыхательных путей. Они выполняют одновременно функции механорецепторов и хеморецепторов. Механорецепторы обладают высоким порогом раздражения и возбуждаются при значительным спадании легких. Подобные спадания наступают в норме 2–3 раза в час. При уменьшении объема легочной ткани рецепторы посылают импульсы к нейронам дыхательного центра, что приводит к дополнительному вдоху. Хеморецепторы реагируют на появление частиц пыли в слизи. При активации ирритарных рецепторов возникают чувство першения в горле и кашель.

Юкстаальвеолярные рецепторы находятся в интерстиции. Они реагируют на появление химических веществ – серотонина, гистамина, никотина, а также на изменение жидкости. Это приводит к особому виду одышки при отеке (при пневмонии).

При сильном раздражении слизистой оболочки дыхательных путей происходит остановка дыхания, а при умеренном появляются защитные рефлексы. Например, при раздражении рецепторов носовой полости возникает чиханье, при активации нервных окончаний нижних дыхательных путей – кашель.

На частоту дыхания оказывают влияние импульсы, поступающие от температурных рецепторов. Так, например, при погружении в холодную воду наступает задержка дыхания.

При активации ноцецепторов сначала наблюдается остановка дыхания, а затем происходит постепенное учащение.

Во время раздражения нервных окончаний, заложенных в тканях внутренних органов, происходит уменьшение дыхательных движений.

При повышении давления наблюдается резкое понижение частоты и глубины дыхания, что влечет уменьшение присасывающей способности грудной клетки и восстановление величины кровяного давления, и наоборот.

Таким образом, рефлекторные влияния, оказываемые на дыхательный центр, поддерживают на постоянном уровне частоту и глубину дыхания.

Главным гуморальным стимулятором дыхательного центра является избыток углекислого газа в крови, что проде­монстрировано в опытах Фредерика и Холдена.

Опыт Фредерика на двух собаках с перекрестным кровообращением. У обеих собак (первой и второй) перерезают сонные артерии и перекрестно их соединяют. Так же поступают с яремными венами. Позвоночные артерии перевязывают. В результате этих операций голова пер­вой собаки получает кровь от второй собаки, а голова второй собаки - от первой. У первой собаки перекрывают трахею, что вызывает гипервентиляцию (частое и глубокое дыхание) у второй со­баки, в голову которой поступает кровь от первой собаки, обедненная кислоро­дом и обогащенная углекислым газом. У первой собаки наблюдается апноэ, в ее голову поступает кровь с более низ­ким напряжением С0 2 и примерно с обычным, нормальным содержанием 0 2 - гипервентиляция вымывает С0 2 и практически не влияет на содержание 0 2 в крови, так как гемоглобин насыщен

0 2 почти полностью и без гипервенти­ляции.

Результаты опыта Фредерика свиде­тельствуют о том, что дыхательный центр возбуждается либо избытком углекисло­го газа, либо недостатком кислорода .

В опыте Холдена в замкну­том пространстве, из которого С0 2 удаляется, дыхание стимулируется слабо. Если С0 2 не удаляется, наблюда­ется одышка - учащение и углубление дыхания. Позже было доказано, что уве­личение содержания С0 2 в альвеолах на 0,2 % ведет к увеличению вентиляции легких на 100 %. Увеличение содержа­ния С0 2 в крови стимулирует дыхание как за счет снижения pH, так и непо­средственным действием самого С0 2 .

Влияние С0 2 и ионов Н + на дыхание опосредовано главным образом их дей­ствием на особые структуры ствола моз­га, обладающие хемочувствительностью (центральные хеморецепторы). Хеморе­цепторы, реагирующие на изменение газового состава крови, обнаружены снаружи в стенках сосудов только в двух областях - в дуге аорты и синокаротидной области.

Роль аортальных и синокаротидных хеморецепторов в регуляции дыхания по­казана в опыте со снижением напряже­ния 0 2 в артериальной крови (гипоксемия) ниже 50-60 мм рт. ст. - при этом увеличивается вентиляция легких уже через 3-5 с. Подобная гипоксемия мо­жет возникнуть при подъеме на высоту, при сердечно-легочной патологии. Со­судистые хеморецепторы возбуждаются и при нормальном напряжении газов крови, их активность сильно возраста­ет при гипоксии и исчезает при дыха­нии чистым кислородом. Стимуляция дыхания при снижении напряжения 0 2 опосредована исключительно пери­ферическими хеморецепторами. Каро­тидные хеморецепторы являются вто­ричными - это тельца, синаптически связанные с афферентными волокнами каротидного нерва. Они возбуждаются при гипоксии, снижении pH и увели­чении Рсо 2 , при этом кальций входит в клетку. Медиатором их является до­фамин.



Аортальные и каротидные тельца воз­буждаются и при повышении напряже­ния С0 2 или при уменьшении pH. Одна­ко влияние С0 2 с этих хеморецепторов выражено меньше, нежели влияние 0 2 .

Гипоксемия (снижение парциального давления кислорода в крови) стимулирует дыхание значительно больше, если она сопровож­дается гиперкапнией , что наблюдается при очень интенсивной физической ра­боте: гипоксемия увеличивает реакцию на С0 2 . Однако при значительной гипоксемии, вследствие снижения окис­лительного метаболизма, уменьшается чувствительность центральных хеморе­цепторов. В этих условиях решающую роль в стимуляции дыхания играют со­судистые хеморецепторы, активность которых повышается, так как для них адекватным раздражителем является снижение напряжения 0 2 в артериаль­ной крови (аварийный механизм стиму­ляции дыхания).

Таким образом, сосудистые хеморе­цепторы реагируют преимущественно на снижение в крови уровня кислорода, цен­тральные хеморецепторы - на измене­ния в крови и спинномозговой жидкости pH и Рсо г

Значение прессорецепторов каротид­ного синуса и дуги аорты. Повышение АД увеличивает афферентную импуль­сацию в синокаротидном и аортальном нервах, что ведет к некоторому угнете­нию дыхательного центра и ослаблению вентиляции легких. Напротив, дыхание несколько усиливается при снижении АД и уменьшении афферентной им­пульсации в ствол мозга от сосудистых прессорецепторов.

Основная функция дыхательной системы заключается в обеспечении газообмена кислорода и углекислого газа между окружающей средой и организмом в соответствии с его метаболическими потребностями. В целом эту функцию регулирует сеть многочисленных нейронов ЦНС, которые связаны с дыхательным центром продолговатого мозга.

Под дыхательным центром понимают совокупность нейронов, расположенных в разных отделах ЦНС, обеспечивающих координированную деятельность мышц и приспособление дыхания к условиям внешней и внутренней среды. В 1825 г. П. Флуранс выделил в ЦНС «жизненный узел», Н.А. Миславский (1885) открыл инспираторную и экспираторную части, а позже Ф.В. Овсянниковым был описан дыхательный центр.

Дыхательный центр представляет собой парное образование, состоящее из центра вдоха (инспираторного) и центра выдоха (экспираторного). Каждый центр регулирует дыхание одноименной стороны: при разрушении дыхательного центра с одной стороны наступает прекращение дыхательных движений с этой стороны.

Экспираторный отдел - часть дыхательного центра, регулирующая процесс выдоха (его нейроны располагаются в вентральном ядре продолговатого мозга).

Инспираторный отдел — часть дыхательного центра, регулирующая процесс вдоха (локализуется преимущественно в дорсальном отделе продолговатого мозга).

Нейроны верхнего отдела моста, регулирующие акт дыхания, были названы пневмотаксическим центром. На рис. 1 показано расположение нейронов дыхательного центра в различных отделах ЦНС. Центр вдоха обладает автоматизмом и находится в тонусе. Центр выдоха регулируется из центра вдоха через пневмотаксический центр.

Ппевмотаксический комплекс — часть дыхательного центра, расположенная в области варолиева моста и регулирующая вдох и выдох (во время вдоха вызывает возбуждение центра выдоха).

Рис. 1. Локализация дыхательных центров в нижней части ствола мозга (вид сзади):

ПН — пневмотаксический центр; ИНСП — инспираторный; ЗКСП — экспираторный. Центры являются двусторонними, но для упрощения схемы на каждой из сторон изображен только один. Перерезка по линии 1 не отражается на дыхании, по линии 2 отделяется пневмотаксический центр, ниже линии 3 наступает остановка дыхания

В структурах моста тоже различают два дыхательных центра. Один из них — пневмотаксический — способствует смене вдоха на выдох (за счет переключения возбуждения из центра вдоха на центр выдоха); второй центр осуществляет тоническое влияние на дыхательный центр продолговатого мозга.

Экспираторный и инспираторный центры находятся в реципрокных отношениях. Под влиянием спонтанной активности нейронов инспираторного центра возникает акт вдоха, во время которого при растяжении легких возбуждаются механорецепторы. Импульсы от механорецепторов по афферентным нейронам возбуждающего нерва поступают вдыхательный центр и вызывают возбуждение экспираторного и торможение инспираторного центра. Это обеспечивает смену вдоха на выдох.

В смене вдоха на выдох существенное значение имеет пневмотаксический центр, который свое влияние осуществляет через нейроны экспираторного центра (рис. 2).

Рис. 2. Схема нервных связей дыхательного центра:

1 — инспираторный центр; 2 — пневмотаксический центр; 3 — экспираторный центр; 4 — механорецепторы легкого

В момент возбуждения инспираторного центра продолговатого мозга одновременно возникает возбуждение в инспираторном отделе пневмотаксического центра. От последнего по отросткам его нейронов импульсы приходят к экспираторному центру продолговатого мозга, вызывая его возбуждение и по индукции — торможение инспираторного центра, что приводит к смене вдоха на выдох.

Таким образом, регуляция дыхания (рис. 3) осуществляется благодаря согласованной деятельности всех отделов ЦНС, объединенных понятием дыхательного центра. На степень активности и взаимодействие отделов дыхательного центра влияют различные гуморальные и рефлекторные факторы.

Автомашин дыхательного центра

Способность дыхательного центра к автоматии впервые обнаружена И.М. Сеченовым (1882) в опытах на лягушках в условиях полной деафферентации животных. В этих экспериментах, несмотря на то что афферентные импульсы не поступали в ЦНС, регистрировались колебания потенциалов в дыхательном центре продолговатого мозга.

Об автоматии дыхательного центра свидетельствует опыт Гейманса с изолированной головой собаки. Ее мозг был перерезан на уровне моста и лишен различных афферентных влияний (были перерезаны языкоглоточный, язычный и тройничный нервы). В этих условиях к дыхательному центру не поступали импульсы не только от легких и дыхательных мышц (вследствие предварительного отделения головы), но и от верхних дыхательных путей (вследствие перерезки названных нервов). Тем не менее у животного сохранились ритмические движения гортани. Этот факт можно объяснить только наличием ритмической активности нейронов дыхательного центра.

Автоматия дыхательного центра поддерживается и изменяется под влиянием импульсов от дыхательных мышц, сосудистых рефлексогенных зон, различных интеро- и экстерорецепторов, а также под влиянием многих гуморальных факторов (рН крови, содержание углекислого газа и кислорода в крови и др).

Влияние углекислого газа на состояние дыхательного центра

Влияние углекислого газа на активность дыхательного центра особенно ярко демонстрируется в опыте Фредерика с перекрестным кровообращением. У двух собак перерезают сонные артерии и яремные вены и соединяют перекрестно: периферический конец сонной артерии соединяют с центральным концом этого же сосуда второй собаки. Так же перекрестно соединяют и яремные вены: центральный конец яремной вены первой собаки соединяется с периферическим концом яремной вены второй собаки. В результате кровь от туловища первой собаки поступает к голове второй собаки, а кровь от туловища второй собаки — к голове первой собаки. Все другие сосуды перевязывают.

После такой операции у первой собаки производили зажатие трахеи (удушение). Это приводило к тому, что через некоторое время наблюдались увеличение глубины и частоты дыхания у второй собаки (гиперпноэ), тогда как у первой собаки наступала остановка дыхания (апноэ). Объясняется это тем, что у первой собаки в результате зажатия трахеи не осуществлялся обмен газов, а в крови увеличивалось содержание углекислого газа (наступала гиперкапния) и уменьшалось содержание кислорода. Эта кровь поступала к голове второй собаки и оказывала влияние на клетки дыхательного центра, следствием чего явилось гиперпноэ. Но в процессе усиленной вентиляции легких в крови второй собаки уменьшалось содержание углекислого газа (гипокапния) и увеличивалось содержание кислорода. Кровь с уменьшенным содержанием углекислого газа поступала к клеткам дыхательного центра первой собаки, и раздражение последнего уменьшалось, что приводило к апноэ.

Таким образом, увеличение содержания углекислого газа в крови приводит к увеличению глубины и частоты дыхания, а уменьшение содержания углекислого газа и увеличение кислорода — к его уменьшению вплоть до остановки дыхания. В тех наблюдениях, когда первой собаке давали дышать различными газовыми смесями, наибольшее изменение дыхания наблюдалось при увеличении содержания углекислого газа в крови.

Зависимость деятельности дыхательного центра от газового состава крови

Деятельность дыхательного центра, определяющая частоту и глубину дыхания, зависит прежде всего от напряжения газов, растворенных в крови, и концентрации в ней водородных ионов. Ведущее значение в определении величины вентиляции легких имеет напряжение углекислого газа в артериальной крови: оно как бы создает запрос на нужную величину вентиляции альвеол.

Для обозначения повышенного, нормального и сниженного напряжения углекислого газа в крови используют термины «гиперкапния», «нормокапния» и «гипокапния» соответственно. Нормальное содержание кислорода называется нормоксией , недостаток кислорода в организме и тканях - гипоксией, в крови - гипоксемиеи. Увеличение напряжения кислорода есть гиперксия. Состояние, при котором гиперкапния и гипоксия существуют одновременно, называется асфиксией.

Нормальное дыхание в состоянии покоя называется эипноэ. Гиперкапния, а также снижение величины рН крови (ацидоз) сопровождаются непроизвольным увеличением вентиляции легких - гиперпноэ , направленным на выведение из организма избытка углекислого газа. Вентиляция легких возрастает преимущественно за счет глубины дыхания (увеличения дыхательного объема), но при этом возрастает и частота дыхания.

Гипокапния и повышение уровня рН крови ведут к уменьшению вентиляции, а затем и к остановке дыхания - апноэ.

Развитие гипоксии вначале вызывает умеренное гиперпноэ (в основном в результате возрастания частоты дыхания), которое при увеличении степени гипоксии сменяется ослаблением дыхания и его остановкой. Апноэ вследствие гипоксии смертельно опасно. Его причиной является ослабление окислительных процессов в мозге, в том числе в нейронах дыхательного центра. Гипоксическому апноэ предшествует потеря сознания.

Гиперкаинию можно вызвать вдыханием газовых смесей с повышенным до 6% содержанием углекислого газа. Деятельность дыхательного центра человека находится под произвольным контролем. Произвольная задержка дыхания на 30-60 с вызывает асфиксичсские изменения газового состава крови, после прекращения задержки наблюдается гиперпноэ. Гипокапнию легко вызывать произвольным усилением дыхания, а также избыточной искусственной вентиляцией легких (гипервентиляция). У бодрствующего человека даже после значительной гипервентиляции остановки дыхания обычно не возникает вследствие контроля дыхания передними отделами мозга. Гипокапния компенсируется постепенно, в течение нескольких минут.

Гипоксия наблюдается при подъеме на высоту вследствие снижения атмосферного давления, при крайне тяжелой физической работе, а также при нарушении дыхания, кровообращения и состава крови.

Во время сильной асфиксии дыхание становится максимально глубоким, в нем принимают участие вспомогательные дыхательные мышцы, возникает неприятное ощущение удушья. Такое дыхание называют диспноэ.

В целом поддержание нормального газового состава крови основано на принципе отрицательной обратной связи. Так, гииеркапния вызывает усиление активности дыхательного центра и увеличение вентиляции легких, а гипокапния — ослабление деятельности дыхательного центра и уменьшение вентиляции.

Рефлекторные влияния на дыхание с сосудистых рефлексогенных зон

Дыхание особенно быстро реагирует на различные раздражения. Оно быстро изменяется под влиянием импульсов, приходящих с экс- теро- и интерорецепторов к клеткам дыхательного центра.

Раздражителем рецепторов могут быть химические, механические, температурные и другие воздействия. Наиболее ярко выраженным механизмом саморегуляции является изменение дыхания под влиянием химического и механического раздражения сосудистых рефлексогенных зон, механического раздражения рецепторов легких и дыхательных мышц.

Синокаротидная сосудистая рефлексогенная зона содержит рецепторы, чувствительные к содержанию углекислого газа, кислорода и водородных ионов в крови. Это отчетливо показано в опытах Гейманса с изолированным каротидным синусом, который отделяли от сонной артерии и снабжали кровью от другого животного. С ЦНС каротидный синус был соединен только нервным путем — сохранился нерв Геринга. При повышении содержания углекислого газа в крови, омывающей каротидное тельце, возникает возбуждение хеморецепторовэтой зоны, вследствие чего увеличивается количество импульсов, идущих к дыхательному центру (к центру вдоха), и наступает рефлекторное увеличение глубины дыхания.

Рис. 3. Регуляция дыхания

К — кора; Гт — гипоталамус; Пвц — пневмотаксический центр; Апц — центр дыхания (экспираторный и инспираторный); Ксин — каротидный синус; Бн — блуждающий нерв; См — спинной мозг; С 3 -С 5 — шейные сегменты спинного мозга; Дфн — диафрагмальный нерв; ЭМ — экспираторные мышцы; ИМ — инспираторные мышцы; Мнр — межреберные нервы; Л — легкие; Дф — диафрагма; Th 1 — Th 6 — грудные сегменты спинного мозга

Увеличение глубины дыхания наступает и при воздействии углекислого газа на хеморецепторы аортальной рефлексогенной зоны.

Такие же изменения дыхания наступают при раздражении хемо- рецепторов названных рефлексогенных зон кровыо с повышенной концентрацией водородных ионов.

В тех же случаях, когда в крови увеличивается содержание кислорода, раздражение хеморецепторов рефлексогенных зон уменьшается, вследствие чего ослабевает поток импульсов к дыхательному центру и наступает рефлекторное уменьшение частоты дыхания.

Рефлекторным возбудителем дыхательного центра и фактором, влияющим на дыхание, является изменение АД в сосудистых рефлексогенных зонах. При повышении АД раздражаются механорецепторы сосудистых рефлексогенных зон, вследствие чего наступает рефлекторное угнетение дыхания. Уменьшение величины АД приводит к увеличению глубины и частоты дыхания.

Рефлекторные влияния на дыхание с механорецепторов легких и дыхательных мышц. Существенным фактором, вызывающим смену вдоха и выдоха, являются влияния с механорецепторов легких, что впервые было обнаружено Герингом и Брейером (1868). Они показали, что каждый вдох стимулирует выдох. Во время вдоха при растяжении легких раздражаются механорецепторы, расположенные в альвеолах и дыхательных мышцах. Возникшие в них импульсы по афферентным волокнам блуждающего и межреберных нервов приходят к дыхательному центру и вызывают возбуждение экспираторных и торможение инспираторных нейронов, вызывая смену вдоха на выдох. Это один из механизмов саморегуляции дыхания.

Подобно рефлексу Геринга-Брейера, осуществляются рефлекторные влияния на дыхательный центр от рецепторов диафрагмы. Во время вдоха в диафрагме при сокращении ее мышечных волокон раздражаются окончания нервных волокон, возникающие в них импульсы поступают в дыхательный центр и вызывают прекращение вдоха и возникновение выдоха. Этот механизм имеет особенно большое значение при усиленном дыхании.

Рефлекторные влияния на дыхание с различных рецепторов организма. Рассмотренные рефлекторные влияния на дыхание относятся к постоянно действующим. Но существуют различные кратковременные воздействия почти со всех рецепторов нашего организма, которые влияют на дыхание.

Так, при действии механических и температурных раздражителей на экстерорецепторы кожи наступает задержка дыхания. При действии холодной или горячей воды на большую поверхность кожи возникает остановка дыхания на вдохе. Болевое раздражение кожи вызывает резкий вдох (вскрикивание) с одновременным закрытием голосовой шели.

Некоторые изменения акта дыхания, возникающие при раздражении слизистых оболочек дыхательных путей, получили название защитных дыхательных рефлексов: кашель, чихание, задержка дыхания, наступающая при действии резких запахов, и др.

Дыхательный центр и его связи

Дыхательным центром называют совокупность нейронных структур, расположенных в различных отделах центральной нервной системы, регулирующих ритмические координированные сокращения дыхательных мышц и приспосабливающих дыхание к изменяющимся условиям среды и потребностям организма. Среди этих структур выделяют жизненно важные отделы дыхательного центра, без функционирования которых дыхание прекращается. К ним относятся отделы, расположенные в продолговатом и спинном мозге. В спинном мозге к структурам дыхательного центра относят мотонейроны, формирующие их аксонами диафрагмальные нервы (в 3-5-м шейных сегментах), и мотонейроны, формирующие межреберные нервы (во 2-10-м грудных сегментах, при этом испираторные нейроны сосредоточены во 2-6-м, а экспираторные — в 8-10-м сегментах).

Особую роль в регуляции дыхания играет дыхательный центр, представленный отделами, локализованными в стволе мозга. Часть нейронных групп дыхательного центра расположена в правой и левой половинах продолговатого мозга в области дна IV желудочка. Выделяют дорзальную группу нейронов, активирующих мышцы вдоха, — инспираторный отдел и вентральную группу нейронов, контролирующих преимущественно выдох, — экспираторный отдел.

В каждом из этих отделов имеются различные по свойствам нейроны. Среди нейронов инспираторного отдела выделяют: 1) ранние инспираторные — их активность повышается за 0,1-0,2 с до начала сокращения инспираторных мышц и длится в течение вдоха; 2) полные инспираторные — активны во время вдоха; 3) поздние инспираторные — активность повышается в середине вдоха и заканчивается в начале выдоха; 4) нейроны промежуточного типа. Часть нейронов инспираторного отдела обладает способностью самопроизвольно ритмически возбуждаться. Описаны аналогичные по свойствам нейроны в экспираторном отделе дыхательного центра. Взаимодействие между этими нейронными пулами обеспечивает формирование частоты и глубины дыхания.

Важная роль в определении характера ритмической активности нейронов дыхательного центра и дыхания принадлежит сигналам, приходящим к центру по афферентным волокнам от рецепторов, а также от коры большого мозга, лимбической системы и гипоталамуса. Упрощенная схема нервных связей дыхательного центра представлена на рис. 4.

Нейроны инспираторного отдела получают информацию о напряжении газов в артериальной крови, рН крови от хеморецепторов сосудов и о рН ликвора от центральных хеморецепторов, расположенных на вентральной поверхности продолговатого мозга.

К дыхательному центру поступают также нервные импульсы от рецепторов, контролирующих растяжение легких и состояние дыхательных и других мышц, от терморецепторов, болевых и сенсорных рецепторов.

Сигналы, поступающие к нейронам дорзальной части дыхательного центра, модулируют их собственную ритмическуюактивность и оказывают влияние на формирование ими потоков эфферентных нервных импульсов, передающихся в спинной мозг и далее к диафрагме и наружным межреберным мышцам.

Рис. 4. Дыхательный центр и его связи: ИЦ — инспираторный центр; ПЦ — инсвмотакснчсскнй центр; ЭЦ — экспираторный центр; 1,2- импульсы от рецепторов растяжения дыхательных путей, легких и грудной клетки

Таким образом, дыхательный цикл запускается инспираторными нейронами, которые активируются благодаря автома- тии, а его продолжительность, частота и глубина дыхания зависят от влияния на нейронные структуры дыхательного центра сигналов рецепторов, чувствительных к уровню р0 2 , рС0 2 и рН, а также от других интеро- и экстерорецепторов.

Эфферентные нервные импульсы от инспираторных нейронов передаются по нисходящим волокнам в составе вентрального и передней части бокового канатика белого вещества спинного мозга к а-мотонейронам, формирующим диафрагмальные и межреберные нервы. Все волокна, следующие к мотонейронам, иннервирующим мышцы выдоха, являются перекрещенными, а из волокон, следующих к моторным нейронам, иннервирующим инспираторные мышцы, перекрещены 90%.

Моторные нейроны, активированные потоком нервных импульсов инспираторных нейронов дыхательного центра, посылают эфферентные импульсы к нервно-мышечным синапсам мышц вдоха, обеспечивающих увеличение объема грудной клетки. Вслед за грудной клеткой увеличивается объем легких и происходит вдох.

Во время вдоха активируются рецепторы растяжения дыхательных путей и легких. Поток нервных импульсов от этих рецепторов по афферентным волокнам блуждающего нерва поступает в продолговатый мозг и активирует экспираторные нейроны, запускающие выдох. Так замыкается один контур механизма регуляции дыхания.

Второй регуляторный контур также начинается от инспираторных нейронов и проводит импульсы к нейронам пневмотаксического отдела дыхательного центра, расположенного в мосту ствола мозга. Этот отдел координирует взаимодействие между инспираторными и экспираторными нейронами продолговатого мозга. Пневмотаксический отдел перерабатывает пришедшую от инспираторного центра информацию и посылает поток импульсов, возбуждающих нейроны экспираторного центра. Потоки импульсов, приходящих от нейронов пневмотаксического отдела и от рецепторов растяжения легких, конвергируют на экспираторных нейронах, возбуждают их, экспираторные нейроны тормозят (но принципу реципрокного торможения) активность инспираторных нейронов. Посылка нервных импульсов к мышцам вдоха прекращается и они расслабляются. Этого достаточно, чтобы произошел спокойный выдох. При усиленном выдохе от экспираторных нейронов посылаются эфферентные импульсы, вызывающие сокращение внутренних межреберных мышц и мышц брюшного пресса.

Описанная схема нервных связей отражает лишь наиболее общий принцип регуляции дыхательного цикла. В действительности же афферентные потоки сигналов от многочисленных рецепторов дыхательных путей, сосудов, мышц, кожи и т.д. поступают ко всем структурам дыхательного центра. На одни группы нейронов они оказывают возбуждающее действие, на другие — тормозное. Переработка и анализ этой информации в дыхательном центре ствола мозга находится под контролем и корригируется высшими отделами головного мозга. Например, гипоталамус играет ведущую роль в изменениях дыхания, связанных с реакциями на болевые раздражения, физическую нагрузку, а также обеспечивает вовлечение дыхательной системы в терморегуляторные реакции. Лимбические структуры оказывают влияние на дыхание при эмоциональных реакциях.

Кора большого мозга обеспечивает включение дыхательной системы в поведенческие реакции, речевую функцию, пенис. О наличии влияния коры большого мозга на отделы дыхательного центра в продолговатом и спинном мозге свидетельствует возможность произвольного изменения частоты, глубины и задержки дыхания человеком. Влияние коры мозга на бульбарный дыхательный центр достигается как через кортико-бульбарные пути, так и через подкорковые структуры (стрпопаллидариые, лимбические, ретикулярную формацию).

Рецепторы кислорода, углекислого газа и рН

Рецепторы кислорода активны уже при нормальном уровне рО 2 и непрерывно посылают потоки сигналов (тоническая импульсация), активирующих инспираторные нейроны.

Рецепторы кислорода сосредоточены в каротидных тельцах (область бифуркации общей сонной артерии). Они представлены гломусными клетками 1-го типа, которые окружены поддерживающими клетками и имеют синаптоподобные связи с окончаниями афферентных волокон языкоглоточного нерва.

Гломусные клетки 1-го типа реагируют на снижение рО 2 в артериальной крови усилением выделения медиатора допамина. Допамин вызывает генерацию нервных импульсов в окончаниях афферентных волокон язы ко глоточного нерва, которые проводятся к нейронам инспираторного отдела дыхательного центра и к нейронам прессорного отдела сосудодвигательного центра. Таким образом, снижение напряжения кислорода в артериальной крови приводит к увеличению частоты посылки афферентных нервных импульсов и повышению активности инспираторных нейронов. Последние увеличивают вентиляцию легких, главным образом за счет учащения дыхания.

Рецепторы, чувствительные к углекислому газу, имеются в каротидных тельцах, аортальных тельцах дуги аорты, а также непосредственно в продолговатом мозге — центральные хеморецепторы. Последние расположены на вентральной поверхности продолговатого мозга в области между выходом подъязычного и блуждающего нервов. Рецепторы углекислого газа воспринимают также изменения концентрации ионов Н + . Рецепторы артериальных сосудов реагируют на изменения рС0 2 и рН плазмы крови, при этом поступление к инспиратор- ным нейронам афферентных сигналов от них возрастает при увеличении рСО 2 , и (или) снижении рН плазмы артериальной крови. В ответ на поступление от них большего числа сигналов в дыхательный центр рефлекторно увеличивается вентиляция легких за счет углубления дыхания.

Центральные хеморецепторы реагируют на изменения рН и рСО 2 , ликвора и межклеточной жидкости продолговатого мозга. Считают, что центральные хеморецепторы преимущественно реагируют на изменение концентрации протонов водорода (рН) в интерстициальной жидкости. При этом изменение рН достигается вследствие легкого проникновения углекислого газа из крови и ликвора через структуры гематоэнцефалического барьера в мозг, где в результате его взаимодействия с Н 2 0 образуется углекислота, диссоциирующая с высвобождением прогонов водорода.

Сигналы от центральных хеморецепторов также проводятся к инспираторным нейронам дыхательного центра. Некоторой чувствительностью к сдвигу рН интерстициальной жидкости обладают сами нейроны дыхательного центра. Снижение рН и накопление углекислого газа в ликворе сопровождается активацией инспираторных нейронов и увеличением вентиляции легких.

Таким образом, регуляция рС0 0 и рН тесно связаны как на уровне эффекторных систем, влияющих на содержание водородных ионов и карбонатов в организме, так и на уровне центральных нервных механизмов.

При быстром развитии гиперкапнии увеличение вентиляции легких лишь приблизительно на 25% вызвано стимуляцией периферических хеморсцегггоров углекислого газа и рН. Остальные 75% связаны с активацией протонами водорода и углекислым газом центральных хеморецепторов продолговатого мозга. Это обусловлено высокой проницаемостью гематоэнцефалического барьера для углекислого газа. Поскольку ликвор и межклеточная жидкость мозга имеют гораздо меньшую емкость буферных систем, чем кровь, то аналогичное с кровью по величине возрастание рС0 2 создает в ликворе более кислую среду, чем в крови:

При длительной гиперкапнии рН ликвора возвращается к норме из-за постепенного увеличения проницаемости гематоэнцефалического барьера для анионов НС0 3 и накопления их в ликворе. Это приводит к снижению вентиляции, развившейся в ответ на гиперкапнию.

Чрезмерное увеличение активности рецепторов рСО 0 и рН способствуют возникновению субъективно тягостных, мучительных ощущений удушья, нехватки воздуха. В этом легко убедиться, если сделать длительную задержку дыхания. В то же время при недостатке кислорода и снижении р0 2 в артериальной крови, когда рСО 2 и рН крови поддерживаются нормальными, человек не испытывает неприятных ощущений. Следствием этого могут быть ряд опасностей, возникающих в быту или в условиях дыхания человека газовыми смесями из замкнутых систем. Наиболее часто они имеют место при отравлении угарным газом (смерть в гараже, другие бытовые отравления), когда человек из-за отсутствия явных ощущений удушья не предпринимает защитных действий.

Слышали про такой эксперимент над экспертами по теме вина? Я как то был во Франции, где мы пробовали по 10-15 вариантов коньяка стоимостью от 100 до 10 000 долларов за бутылку - я вообще ничего не мог там различить. Во-первых совсем не специалист и нет какого то богатого опыта пития, во-вторых коньяк все же крепкая штука.

А вот то, что пишут про эксперименты с вином мне кажется уж очень утрировано, упрощенно или эксперты у них такие никакущие. Вот смотрите сами.

Однажды в Бостоне прошла дегустация вин, в которой приняли участие знаменитые ценители этого напитка. Правила дегустации вина были очень простыми. Двадцать пять лучших вин, цена за которые не должна превышать $12, были куплены в обычном магазине в Бостоне. Позже была составлена группа экспертов по оценке красных и белых вин, которые должны были в слепую выявить самое лучшее вино из представленных…

В результате победителем стало самое дешевое вино. Это ещё раз подтверждает, что дегустаторы и винные критики, это — миф. По результатам анализа ответов экспертов было выявлено, что все дегустаторы выбирали то вино, которое просто им больше всего нравилось по вкусу. Вот вам и "эксперты".

Кстати, в 2001 году Фредерик Броше из Университета Бордо, провел два отдельных и очень показательных эксперимента над дегустаторами. В первом тесте, Броше пригласил 57 экспертов и попросил их описать свои впечатления о всего лишь двух винах.

Перед экспертами стояло два бокала, с белым и красным вином. Хитрость заключалась в том, что красного вина не было, на самом деле это было то же белое вино, подкрашенное пищевым красителем. Но это не помешало экспертам описать «красное» вино на языке, который они обычно используют для описания красных вин.

Один из экспертов высоко оценил его "jamminess" (вареньеподобие), а другой даже "почувствовал" "измельченные красные плоды". Никто не заметил, что это было на самом деле белое вино!!!


Второй эксперимент Броше оказался ещё более убийственным для критиков. Он взял обычное Бордо и разлил его в две разные бутылки с разными этикетками. Одна бутылка была "гран-крю", другая — обычное столовое вино.

Несмотря на то, что они на самом деле пили одно и то же вино, эксперты оценили их по-разному. "Гран крю" был "приятным, древесным, комплексным, сбалансированным и обвалакивающим", а столовое было, по мнению экспертов "слабым, безвкусным, ненасыщенным, простым".

При этом большая часть даже не рекомендовала "столовое" вино к употреблению.
Эксперты — показатели моды и их вкус ничем не отличается от чувства вкуса обычного человека. Просто люди хотят прислушиваться к чьему-либо мнению, для этого и существует "эксперт".

Возникает вопрос: А существуют ли "эксперты"? Другими словами, мы — разные люди, и наши вкусы разнятся так же, как и марки дешевого вина, кому-то они нравятся, а кому-то нет.

Или все же если уж не марку и год урожая, то белое и красное вино то отличить точно можно даже слабенькому эксперту? Как вы относитесь к экспертам по вину?

Ритмическая последовательность вдоха и выдоха, а также изменение характера дыхательных движений в зависимости от состояния организма (покой, работа различной интенсивности, эмоциональные проявления и т. д.) обусловлены наличием дыхательного центра, расположенного в продолговатом мозге (рис. 27). Дыхательным центром называется совокупность нейронов, обеспечивающих деятельность аппарата дыхания и его приспособление к изменяющимся условиям внешней и внутренней среды.

Решающее значение в определении локализации дыхательного центра и его активности имели исследования отечественного физиолога Н. А. Миславского, который в 1885 г. показал, что дыхательный центр у млекопитающих находится в продолговатом мозге на две IV желудочка в области ретикулярной формации. Дыхательный центр - это парное, симметрично расположенное образование, в состав которого входят вдыхательная и выдыхательная части.

Результаты исследований Н. А. Миславского легли в основу современных представлений о локализации, строении и функции дыхательного центра. Они подтверждены в экспериментах с использованием микроэлектродной техники и отведения биопотенциалов от различных структур продолговатого мозга. Было показано, что в дыхательном центре имеются две группы нейронов - инспираторные (вдыхательные) и экспираторные (выдыхательные). Обнаружены некоторые особенности в работе дыхательного центра. При спокойном дыхании активна только небольшая часть дыхательных нейронов и, следовательно, в дыхательном центре есть резерв нейронов, который используется при повышенной потребности организма в кислороде. Установлено, что между инспираторными и экспираторными нейронами дыхательного центра существуют функциональные взаимосвязи. Они выражаются в том, что при возбуждении инспираторных нейронов, обеспечивающих фазу вдоха, деятельность экспираторных нервных клеток заторможена и наоборот. Таким образом, одной из причин ритмичной, автоматической деятельности дыхательного центра являются взаимосвязанные функциональные отношения между вдыхательными и выдыхательными нейронами.

Существуют и другие представления о локализации и организации дыхательного центра, которые поддерживают ряд советских и зарубежных физиологов. Предполагают, что в продолговатом мозге локализованы центры вдоха, выдоха и судорожного дыхания. В верхней части моста мозга (варолиев мост) находится пнеймотаксический центр, который контролирует деятельность расположенных ниже центров вдоха и выдоха и обеспечивает правильное чередование циклов дыхательных движений.

Дыхательный центр, расположенный в продолговатом мозге, посылает импульсы к мотонейронам спинного мозга, иннервирующим дыхательные мышцы. Диафрагма иннервируется аксонами мотонейронов, расположенных на уровне III-IV шейных сегментов спинного мозга. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах грудных сегментов спинного мозга (III-XII).

Регуляция деятельности дыхательного центра

Регуляция деятельности дыхательного центра осуществляется гуморально, за счет рефлекторных воздействий и нервных импульсов, поступающих из вышележащих отделов головного мозга.

По И. П. Павлову, деятельность дыхательного центра зависит от химических свойств крови и от рефлекторных влияний, в первую очередь с легочной ткани.

Гуморальные влияния . Специфическим регулятором активности нейронов дыхательного центра является углекислый газ , который действует на дыхательные нейроны непосредственно и опосредованно. В процессе деятельности нейронов дыхательного центра в них образуются продукты обмена веществ (метаболиты), в том числе и углекислый газ, который оказывает непосредственное влияние на инспираторные нервные клетки, возбуждая их. В ретикулярной формации продолговатого мозга вблизи дыхательного центра обнаружены хеморецепторы, чувствительные к углекислому газу. При увеличении напряжения углекислого газа в крови хеморецепторы возбуждаются и передают эти возбуждения инспираторным нейронам, что приводит к повышению их активности. В лаборатории М. В. Сергиевского получены данные, свидетельствующие о том, что углекислый газ повышает возбудимость нейронов коры головного мозга. В свою очередь клетки коры головного мозга стимулируют активность нейронов дыхательного центра. В механизме стимулирующего влияния углекислого газа на дыхательный центр важное место принадлежит хеморецепторам сосудистого русла. В области каротидных синусов и дуги аорты обнаружены хеморецепторы, чувствительные к изменениям напряжения углекислого газа и кислорода в крови.

Показано, что промывание каротидного синуса или дуги аорты, изолированных в гуморальном отношении, но с сохраненными нервными связями, жидкостью с повышенным содержанием углекислого газа сопровождается стимуляцией дыхания (рефлекс Гейманса). В аналогичных экспериментах было установлено, что повышение напряжения кислорода тормозит активность дыхательного центра.

Опыт с перекрестным кровообращением (опыт Фредерика) . Влияние газового состава крови на активность нейронов дыхательного центра доказано в опыте с перекрестным кровообращением (опыт Фредерика). Для этого у двух наркотизированных собак перерезают и перекрестно соединяют сонные артерии и яремные вены (рис. 28). В результате операции голова первой собаки получала кровь от туловища второй, голова же второй собаки - от туловища первой. После установления перекрестного кровообращения зажимают трахею первой собаки, т. е. производят ее удушение. В результате у этой собаки наблюдается остановка дыхания, у второй - резкая одышка.

Установленные факты связаны с тем, что в крови первой собаки накапливается избыточное количество углекислого газа, который, поступая с кровью к голове второй собаки, стимулирует активность нейронов дыхательного центра, в результате чего и наблюдается одышка. За счет гипервентиляции кровь второй собаки содержит повышенное количество кислорода и уменьшенное углекислого газа. Поступая к голове первой собаки, кровь второй собаки, богатая кислородом и бедная углекислым газом, тормозит активность нейронов дыхательного центра, и у первой собаки наблюдается остановка дыхания.

Из опыта Фредерика следует, что деятельность дыхательного центра стимулируется при избытке в крови углекислого газа и тормозится при повышении напряжения кислорода. Противоположные сдвиги в активности дыхательного центра наблюдают при снижении концентрации углекислого газа и уменьшении напряжения кислорода в крови.

Механизм влияния углекислого газа на активность нейронов дыхательного центра сложен. Углекислый газ оказывает на дыхательные нейроны прямое (возбуждение клеток коры головного мозга, нейронов ретикулярной формации), а также рефлекторное действие за счет раздражения специальных хеморецепторов сосудистого русла. Следовательно, в зависимости от газового состава внутренней среды организма меняется активность нейронов дыхательного центра, что отражается на характере дыхательных движений.

При оптимальном содержании в крови углекислого газа и кислорода наблюдаются дыхательные движения, отражающие умеренную степень возбуждения нейронов дыхательного центра. Эти дыхательные движения грудной клетки получили название эйпноэ.

Избыточное содержание углекислого газа и недостаток кислорода в крови усиливают активность дыхательного центра, что обусловливает возникновение частых и глубоких дыхательных движений - гиперпноэ. Еще большее нарастание количества углекислого газа в крови приводит к нарушению ритма дыхания и появлению одышки - диспноэ. Понижение концентрации углекислого газа и избыток кислорода в крови угнетают активность дыхательного центра. В этом случае дыхание становится поверхностным, редким и может наступить его остановка - апноэ .

Периодическим называют такой тип дыхания, при котором группы дыхательных движений чередуются с паузами. Продолжительность пауз колеблется в пределах от 5 до 20 с и даже более. При периодическом дыхании типа Чейна-Стокса после паузы появляются слабые, впоследствии усиливающиеся дыхательные движения. При достижении максимума вновь наблюдается ослабление дыхания, а затем оно прекращается - наступает новая пауза. По окончании паузы цикл вновь повторяется. Продолжительность цикла 30-60 с. При снижении возбудимости дыхательного центра, обусловленном недостатком кислорода, наблюдаются и другие типы периодического дыхания.

Причины первого вдоха новорожденного . В организме матери газообмен плода происходит через пупочные сосуды, тесно контактирующие с плацентарной кровью матери. После рождения ребенка и отделения его от плаценты указанная связь нарушается. Метаболические процессы в организме новорожденного приводят к образованию и накоплению углекислого газа, который гуморально возбуждает дыхательный центр. Кроме того, изменение условий существования ребенка приводит к возбуждению экстеро- и проприорецепторов, что также является одним из механизмов, принимающих участие в возникновении первого вдоха.

Рефлекторные влияния на активность нейронов дыхательного центра . На активность нейронов дыхательного центра выраженное влияние оказывают рефлекторные воздействия. Различают постоянные и непостоянные (эпизодические) рефлекторные влияния на дыхательный центр.

Постоянные рефлекторные влияния возникают в результате раздражения рецепторов альвеол (рефлекс Геринга-Брейера), корня легкого и плевры (пульмоторакальный рефлекс), хеморецепторов дуги аорты и каротидных синусов (рефлекс Гейманса), механорецепторов указанных сосудистых областей, проприорецепторов дыхательных мышц.

Наиболее важным рефлексом этой группы является рефлекс Геринга - Брейера. В альвеолах легких заложены механорецепторы растяжения и спадения, являющиеся чувствительными нервными окончаниями блуждающего нерва. Рецепторы растяжения возбуждаются при обычном и максимальном вдохе, т. е. любое увеличение объема легочных альвеол возбуждает эти рецепторы. Рецепторы спадения становятся активными только в условиях патологии (при максимальном спадении альвеол).

В экспериментах на животных установлено, что при увеличении объема легких (вдувание в легкие воздуха) наблюдается рефлекторный выдох, выкачивание же воздуха из легких приводит к быстрому рефлекторному вдоху. Указанные реакции не возникали при перерезке блуждающих нервов. Следовательно, нервные импульсы в центральную нервную систему поступают по блуждающим нервам.

Рефлекс Геринга - Брейера относится к механизмам саморегуляции дыхательного процесса, обеспечивая смену актов вдоха и выдоха. При растяжении альвеол во время вдоха нервные импульсы от рецепторов растяжения по блуждающему нерву идут к экспираторным нейронам, которые, возбуждаясь, тормозят активность инспираторных нейронов, что приводит к пассивному выдоху . Легочные альвеолы спадаются, и нервные импульсы от рецепторов растяжения уже не поступают к экспираторным нейронам. Активность их падает, что создает условия для повышения возбудимости инспираторной части дыхательного центра и активного вдоха . Кроме того, активность инспираторных нейронов повышается при нарастании концентрации углекислого газа в крови, что также способствует осуществлению акта вдоха.

Таким образом, саморегуляция дыхания осуществляется на основе взаимодействия нервного и гуморального механизмов регуляции активности нейронов дыхательного центра.

Пульмоторакальный рефлекс возникает при возбуждении рецепторов, заложенных в легочной ткани и плевре. Проявляется этот рефлекс при растяжении легких и плевры. Рефлекторная дуга замыкается на уровне шейных и грудных сегментов спинного мозга. Конечным эффектом рефлекса является изменение тонуса дыхательной мускулатуры, благодаря чему происходит увеличение или уменьшение среднего объема легких.

К дыхательному центру постоянно идут нервные импульсы от проприорецепторов дыхательных мышц. Во время вдоха происходит возбуждение проприорецепторов дыхательных мышц и нервные импульсы от них поступают к инспираторным нейронам дыхательного центра. Под влиянием нервных импульсов активность инспираторных нейронов тормозится, что способствует наступлению выдоха.

Непостоянные рефлекторные влияния на активность дыхательных нейронов связаны с возбуждением разнообразных по своим функциям экстеро- и интерорецепторов.

К непостоянным рефлекторным воздействиям, оказывающим влияние на активность дыхательного центра, относятся рефлексы, возникающие при раздражении рецепторов слизистой оболочки верхних дыхательных путей, носа, носоглотки, температурных и болевых рецепторов кожи, проприорецепторов скелетных мышц, интерорецепторов. Так, например, при внезапном вдыхании паров аммиака, хлора, сернистого ангидрида, табачного дыма и некоторых других веществ происходит раздражение рецепторов слизистой оболочки носа, глотки, гортани, что приводит к рефлекторному спазму голосовой щели, а иногда даже мускулатуры бронхов и рефлекторной задержке дыхания.

При раздражении эпителия дыхательных путей накопившейся пылью, слизью, а также попавшими химическими раздражителями и инородными телами наблюдаются чиханье и кашель. Чиханье возникает при раздражении рецепторов слизистой оболочки носа, а кашель - при возбуждении рецепторов гортани, трахеи, бронхов.

Кашель и чиханье начинаются с глубокого вдоха, который возникает рефлекторно. Затем происходит спазм голосовой щели и одновременно активный выдох. Вследствие этого давление в альвеолах и воздухоносных путях значительно возрастает. Следующее за этим раскрытие голосовой щели приводит к выбросу воздуха из легких толчком в дыхательные пути и наружу через нос (при чиханье) или через рот (при кашле). Пыль, слизь, инородные тела увлекаются этой струей воздуха и выбрасываются из легких и дыхательных путей.

Кашель и чиханье в условиях нормы относят к категории защитных рефлексов. Эти рефлексы называют защитными потому, что они препятствуют попаданию вредных веществ в дыхательные пути или же способствуют их удалению.

Раздражение температурных рецепторов кожи, в частности Холодовых, приводит к рефлекторной задержке дыхания. Возбуждение болевых рецепторов кожи, как правило, сопровождается учащением дыхательных движений.

Возбуждение проприорецепторов скелетных мышц обусловливает стимуляцию акта дыхания. Повышенная активность дыхательного центра в этом случае является важным приспособительным механизмом, обеспечивающим увеличенные потребности организма в кислороде при мышечной работе.

Раздражение интерорецепторов, например механорецепторов желудка при его растяжении, приводит к торможению не только сердечной деятельности, но и дыхательных движений.

При возбуждении механорецепторов сосудистых рефлексогенных зон (дуга аорты, каротидные синусы) в результате изменения величины артериального давления наблюдаются сдвиги в активности дыхательного центра. Так, повышение артериального давления сопровождается рефлекторной задержкой дыхания, понижение приводит к стимуляции дыхательных движений.

Таким образом, нейроны дыхательного центра чрезвычайно чувствительны к воздействиям, обусловливающим возбуждение экстеро-, проприо- и интерорецепторов, что приводит к изменению глубины и ритма дыхательных движений в соответствии с условиями жизнедеятельности организма.

Влияние коры головного мозга на активность дыхательного центра . Регуляция дыхания корой больших полушарий имеет свои качественные особенности. В опытах с прямым раздражением электрическим током отдельных областей коры головного мозга было показано выраженное влияние ее на глубину и частоту дыхательных движений. Результаты исследований М. В. Сергиевского и его сотрудников, полученные при непосредственном раздражении различных участков коры больших полушарий электрическим током в острых, полухронических и хронических опытах (вживленные электроды), свидетельствуют о том, что нейроны коры не всегда оказывают однозначное влияние на дыхание. Конечный эффект зависит от ряда факторов, главным образом от силы, продолжительности и частоты применяемых раздражений, функционального состояния коры головного мозга и дыхательного центра.

Важные факты были установлены Э. А. Асратяном и его сотрудниками. Было обнаружено, что у животных с удаленной корой головного мозга отсутствовали приспособительные реакции внешнего дыхания на изменения условий жизнедеятельности. Так, мышечная активность у таких животных не сопровождалась стимуляцией дыхательных движений, а приводила к длительной одышке и дискоординации дыхания.

Для оценки роли коры головного мозга в регуляции дыхания большое значение имеют данные, полученные с помощью метода условных рефлексов. Если у человека или животных звук метронома сопровождать вдыханием газовой смеси с повышенным содержанием углекислого газа, то это приведет к увеличению легочной вентиляции. Через 10-15 сочетаний изолированное включение метронома (условный сигнал) вызовет стимуляцию дыхательных движений - образовался условный дыхательный рефлекс на избранное количество ударов метронома в единицу времени.

Учащение и углубление дыхания, которые наступают до начала физической работы или спортивных состязаний, также осуществляются по механизму условных рефлексов. Эти изменения в дыхательных движениях отражают сдвиги в активности дыхательного центра и имеют приспособительное значение, способствуя подготовке организма к выполнению работы, требующей большой затраты энергии и усиления окислительных процессов.

По мнению М. Е. Маршака, корковая регуляция дыхания обеспечивает необходимый уровень легочной вентиляции, темп и ритм дыхания, постоянство уровня углекислого газа в альвеолярном воздухе и артериальной крови.

Приспособление дыхания к внешней среде и сдвигам, наблюдаемым во внутренней среде организма, связано с обширной нервной информацией, поступающей в дыхательный центр, которая предварительно перерабатывается, главным образом в нейронах моста мозга (варолиев мост), среднего и промежуточного мозга и в клетках коры головного мозга.

Таким образом, регуляция активности дыхательного центра сложна. По М. В. Сергиевскому, она состоит из трех уровней.

Первый уровень регуляции представлен спинным мозгом. Здесь располагаются центры диафрагмальных и межреберных нервов. Эти центры обусловливают сокращение дыхательных мышц. Однако этот уровень регуляции дыхания не может обеспечить ритмичную смену фаз дыхательного цикла, так как огромное количество афферентных импульсов от дыхательного аппарата, минуя спинной мозг, направляется непосредственно в продолговатый мозг.

Второй уровень регуляции связан с функциональной активностью продолговатого мозга. Здесь находится дыхательный центр, который воспринимает разнообразные афферентные импульсы, идущие от дыхательного аппарата, а также от основных рефлексогенных сосудистых зон. Этот уровень регуляции обеспечивает ритмичную смену фаз дыхания и активность спинномозговых мотонейронов, аксоны которых иннервируют дыхательную мускулатуру.

Третий уровень регуляции - это верхние отделы головного мозга, включающие и корковые нейроны. Только при наличии коры полушарий головного мозга возможно адекватное приспособление реакций системы дыхания к изменяющимся условиям существования организма.

Дыхание при физической работе

Физическая нагрузка сопровождается значительными сдвигами в активности органов и физиологических систем организма. Повышенные энерготраты обеспечиваются увеличением утилизации кислорода, что приводит к нарастанию содержания углекислого газа в жидкостях и тканях организма. Сдвиги в химическом составе внутренней среды организма обусловливают повышение функциональной активности системы органов дыхания. Так, у тренированных людей при напряженной мышечной работе объем легочной вентиляции возрастает до 5·10 -2 м 3 и даже до 1·10 -1 м 3 (50 и даже 100 л/мин) по сравнению с 5·10 -3 -8·10 -3 м 3 (5-8 л/мин) в состоянии относительного физиологического покоя.

Повышение минутного объема дыхания при физической нагрузке связано с увеличением глубины и частоты дыхательных движений. При этом у тренированных людей в основном изменяется глубина дыхания, у нетренированных - частота дыхательных движений.

Сдвиги в функциональной активности системы дыхания при физической нагрузке обусловливаются нервными и гуморальными механизмами. При физической нагрузке увеличивается концентрация в крови и тканях углекислого газа и молочной кислоты, которые стимулируют нейроны дыхательного центра как гуморальным путем, так и за счет нервных импульсов, поступающих от сосудистых рефлексогенных зон. Кроме того, нейроны дыхательного центра стимулируются нервными влияниями, идущими от проприорецепторов дыхательных и скелетных мышц. Наконец, активность нейронов дыхательного центра обеспечивается потоком нервных импульсов, поступающих из клеток коры головного мозга, обладающих высокой чувствительностью к недостатку кислорода и избытку углекислого газа.

Одновременно с изменениями в системе дыхания при физической нагрузке возникают приспособительные реакции в сердечно-сосудистой системе. Увеличиваются частота и сила сердечных сокращений, повышается кровяное давление, происходит перераспределение сосудистого тонуса - расширяются сосуды работающих мышц и суживаются сосуды других областей. Кроме того, открывается дополнительное количество капилляров в работающих органах и происходит выброс крови из депо.

Значительную роль в координации функций органов и физиологических систем при физической нагрузке играет кора головного мозга. Так, в предстартовом состоянии у спортсменов отмечается увеличение силы и частоты сердечных сокращений, возрастает легочная вентиляция, повышается кровяное давление. Следовательно, условнорефлекторный механизм - один из важнейших нервных механизмов адаптации организма к меняющимся условиях внешней среды.

Система дыхания обеспечивает возросшие потребности организма в кислороде. Системы же кровообращения и крови, перестраиваясь на новый функциональный уровень, способствуют транспорту кислорода к тканям и углекислого газа к легким.