Удаление парабиотического агента с нервного волокна. Лабильность

Парабиоз следует рассматривать как активное состояние, характеризующееся местным, неподвижным актом возбуждения. Парабиотический участок обладает всеми признаками возбуждения, он лишь неспособен проводить бегущие волны возбуждения. Когда это состояние достигает полного развития, ткань как бы утрачивает свои функциональные свойства, так как, находясь в состоянии собственного сильного возбуждения, она становится рефрактерной по отношению к новым раздражителям. Местное возбуждение проявляется поэтому, как торможение, исключающее возможность функционирования ткани.

Местное парабиотическое возбуждение наряду со своей стойкостью и непрерывностью способно углубляться под влиянием приходящих импульсов возбуждения. При этом, чем сильнее и чаще эти импульсы, тем более углубляют они местное возбуждение и тем хуже проводятся через альтерированный участок. Поэтому эффекты сильных и слабых раздражений в уравнительную фазу выравниваются, а в парадоксальную фазу сильные раздражения совсем не проходят, тогда как слабые еще могут пройти. В тормозную фазу импульс, пришедший с нормального участка, не проходит сам и препятствует развитию распространяющегося возбуждения, так как, суммируясь со стационарным возбуждением, делает его стойким и неколеблющимся.

Наблюдаемые закономерности позволили Н. Е. Введенскому выдвинуть теорию, согласно которой устанавливается единая природа процесса возбуждения и торможения. Возникновение того или иного состояния зависит, согласно этой теории, от силы и частоты раздражения и функционального состояния ткани. Закономерности парабиотического торможения, установленные Н. Е. Введенским, согласно данным И. П. Павлова, воспроизводятся на" нервных клетках коры больших полушарий головного мозга и таким образом оказываются справедливыми для целостной деятельности организма.

О с н а щ е н и е: препаровальный набор, универсальный штатив с горизонтальным миографом, электростимулятор, раздражающие электроды, раствор Рингера, одно из следующих веществ: 1 % раствор калия хлорида (панангин), эфир, спирт или новокаин,. Работу проводят на лягушке.

С о д е р ж а н и е р а б о т ы. Приготовьте нервно-мышечный препарат и зафиксируйте его в миографе. Стимулируя нерв в режиме одиночного раздражения, подберите надпороговую и субмаксимальную силу раздражений, вызывающих слабое и сильное сокращение мышцы. Запишите их значения (мВ).

Смочите маленький ватный тампон раствором имеющегося у вас вещества. Наложите его на нерв ближе к месту его вхождения в мышцу. Через каждые 30 сек наносите одиночные раздражения на нерв выше альтерированного участка. При бережном приготовлении препарата удается проследить последовательное развитие фаз парабиоза (рис. 10).

Рис. 10. Последовательное развитие фаз парабиоза: А – исходное состояние;

Б – уравнительная фаза; В – парадоксальная фаза; Г – тормозная фаза.

Оформление протокола.

1. Запишите результаты опыта в тетради.

2. Вклейте кимограммы в соответствии с фазами парабиоза, сравните их с эталоном (рис. 10).

3. Объясните механизм парабиоза.

КОНТРОЛЬ УСВОЕНИЯ ТЕМЫ.

Тестовое задание к занятию «Механизмы распространения и передачи возбуждения»

1. Активацией Na+/K+-АТФ-азы;

2. Снижением интенсивности раздражителя;

3. Инактивацией системы Na+-каналов;

4. Активацией системы К+-каналов;

5. Утомлением клетки;

2. Мембрана нервного волокна ограничивающая нервное окончание называется:

1. постсинаптической

2. субсинаптической

3. синаптической щель

4. пресинаптической

3. Электротоническое распространение возбуждение по мембране нервной клетки:

1. Сопровождается деполяризацией мембраны

2. Сопровождается гиперполяризацией мембраны;

3. Происходит без изменения заряда мембраны;

4. Происходит без изменения проницаемости мембранных ионных каналов;

5. Невозможно

4. Тормозной и возбуждающий синапсы различаются:

1. специфическим расположением на клетке;

2. механизмом выброса медиатора

3. химической структурой медиатора

4. рецепторным аппаратом постсинаптической мембраны;

5. размером

5. При возникновении возбуждения (ПД) в теле нейрона (соме) холмике:

1. Оно будет распространяться в направлении от тела нейрона;

2. Оно будет распространяться по направлению к телу нейрона;

3. оно будет распространяться в обоих направлениях

4. Возникновение возбуждения в теле нейрона (соме) невозможно;

6. Роль ацетилхолина в механизме синаптической передачи возбуждения в мионевральном синапсе заключается в следующем:

1. Ацетилхолин взаимодействует со специфическим рецептором на постсинаптической мембране

и тем самым способствует открытию натриевых каналов.

2. Ацетилхолин, способствует накоплению медиатора в пресинаптическом аппарате

3. Ацетилхолин способствует выходу медиатора из пресинаптического аппарата.

4. Ацетилхолин проникает через постсинаптическую мембрану и деполяризует ее (формирует ВПСП);

5. Ацетилхолин проникает через постсинаптическую мембрану и гиперполяризует ее (формирует ТПСП);

7. Медиатор обеспечивает передачу возбуждения

1. Только в межнейронных синапсах;

2. Только в нервно-мышечных синапсах;

3. Во всех химических синапсах;

4. В любых синапсах

5. Во всех электрических синапсах;

8. На пресинаптичнеской мембране нервно-мышечного синапса скелетных мышц человека формируются:

1. только возбуждающие потенциалы

2. только тормозные потенциалы

3. и возбуждающие и тормозные потенциалы

4. для сокращения мышцы возбуждающие, для расслабления - тормозные

5. на пресинаптической мембране потенциал не формируется

9. ТПСП нервно-мышечного синапса формируется:

1. На пресинаптической мембране;

2. В аксонном холмике

3. На постсинаптической мембране

4. В нервно-мышечных синапсах ВПСП не формируются;

10. Выброс ацетилхолина в синаптическую щель в мионевральном синапсе приводит к:

1. деполяризации постсинаптической мембраны;

2. гиперполяризации постсинаптической мембраны;

3. деполяризации пресинатической мембраны;

4. блокированию проведения возбуждения;

5. гиперполяризации пресинаптической мембраны;

11. Диффузионный механизм распространения медиатора в синаптической щели является причиной:

1. Синаптической депрессии;

2. Синаптической задержки;

3. Инактивации медиатора;

4. Сальтаторного распространения возбуждения;

12. Сальтаторное проведение нервного импульса осуществляется:

1. По мембране тела нейрона;

2. По мембране миелинизированных нервных волокон;

3. По мембране немиелинизированных нервных волокон;

4. По нервам;

13. В момент прохождения волны возбуждения по нервному волокну, возбудимость волокна в месте ее прохождения:

1. Возрастает до максимальной;

2. Снижается до минимальной;

3. Снижается до пороговой;

4. Не изменяется;

14. Направления распространения возбуждения по нервному волокну и его мембранного тока на его мембране:

1. Параллельны и совпадают;

2. Параллельны и противоположны;

3. Перпендикулярны;

4. Синусоидальны;

15. Возбуждение в безмиелиновых нервных волокнах распространяется:

1.Скачкообразно, (перепрыгивая) через участки волокна, покрытые миелиновой оболочкой;

3. Непрерывно вдоль всей мембраны от возбужденного участка расположенному рядом

невозбужденному участку

4. Электротонически и в обе стороны от места возникновения

Парабиоз (в пер.: “para” - около, “bio” - жизнь) – это состояние на грани жизни и гибли ткани, возникающее при воздействии на нее токсических веществ таких как наркотиков, фенола, формалина, различных спиртов, щелочей и других, а также длительного действия электрического тока. Учение о парабиозе связано с выяснением механизмов торможения, которое лежит в основе жизнедеятельности организма

Как известно, ткани могут находиться в двух функциональных состояниях - торможения и возбуждения. Возбуждение это активное состояние ткани, сопровождающееся деятельностью какого-либо органа или системы. Торможение - это также активное состояние ткани, но характеризующееся угнетением деятельности какого-либо органа или системы организма. По мнению Введенского, в организме имеет место один биологический процесс, который имеет две стороны - торможение и возбуждение, что доказывает учение о парабиозе.

Классические опыты Введенского при изучении парабиоза проводились на нервно-мышечном препарате. При этом использовалась пара электродов, наложенных на нерв, между которыми помещалась ватка, смоченная KCl (калийный парабиоз). При развитии парабиоза выявлялись четыре его фазы.

1. Фаза кратковременного повышения возбудимости. Редко улавливается и заключается в том, что под действием подпорогового раздражителя мышца сокращается.

2. Фаза уравнительная (трансформации). Проявляется в том, что на частые и редкие стимулы мышца отвечает одинаковым по величине сокращением. Выравнивание силы мышечных эффектов происходит, по данным Введенского, за счет парабиотического участка, в котором снижается лабильность под влиянием KСl. Так, если лабильность в парабиотическом участке снизилась до 50 им/с, то такую частоту он пропускает, в то время, как более частые сигналы задерживаются в парабиотическом участке, т. к. часть из них попадает в период рефрактерности, который создается предыдущим импульсом и в связи с этим не проявляет своего действия.

3. Парадоксальная фаза. Характеризуется тем, что при действии частых стимулов наблюдается слабый сократительный эффект мышцы или вообще его не наблюдается. В то же самое время, на действия редких импульсов имеет место несколько большее по величине сокращение мышцы, чем на более частые. Парадоксальная реакция мышцы связана с еще большим уменьшением лабильности в парабиотическом участке, который практически теряет свойство проводить частые импульсы.

4. Тормозная фаза. В этот период состояния ткани через парабиотический участок не проходят ни частые, ни редкие импульсы, в результате чего мышца н сокращается. Может быть в парабиотическом участке ткань погибла? Если прекратить действовать KСl, то нервно-мышечный препарат постепенно восстанавливает свою функцию, проходя стадии парабиоза в обратном порядке, или действовать на него одиночными электрическими стимулами, на которые мышца слегка сокращается.

По мнению Введенского, в парабиотическом участке во время фазы торможения развивается стационарное возбуждение, блокирующее проведение возбуждения к мышце. Оно является результатом суммации возбуждения, создаваемого раздражением KСl и приходящими от места электрической стимуляции импульсами. По данным Введенского, парабиотический участок обладает всеми признаками возбуждения, кроме одного - способности распространяться. Как следует, тормозная фаза парабиоза выявляет единство процессов возбуждения и торможения.

По современным данным, снижение лабильности в парабиотическом участке, по-видимому, связано с постепенным развитием натриевой инактивации и закрытием натриевых каналов. Причем, чем чаще к нему поступают импульсы, тем она проявляется в большей степени. Парабиотическое торможение носит распространенный характер и встречается при многих как физиологических, так особенно патологических состояниях, в том числе при применении различных наркотических веществ.

Есть ряд законов, которым подчиняются возбудимые ткани: 1. Закон «силы» ; 2. Закон «всё или ничего» ; 3. Закон «силы – времени» ; 4. Закон «крутизны нарастания тока» ; 5. Закон «полярного действия постоянного тока» .

Закон «силы» Чем больше сила раздражителя, тем больше величина ответной реакции. К примеру, величина сокращения скелетной мышцы в определенных пределах зависит от силы раздражителя: чем больше сила раздражителя, тем больше величина сокращения скелетной мышцы (до достижения максимального ответа).

Закон «все или ничего» Ответная реакция не зависит от силы раздражения (пороговая или сверхпороговая). Если сила раздражителя ниже пороговой, то ткань не реагирует («ничего»), но если сила достигла порогового значения, то ответная реакция – максимальная («всё»). Соответственно этому закону сокращается, к примеру, сердечная мышца, которая реагирует максимальным сокращением уже на пороговую (минимальную) силу раздражения.

Закон «силы – времени» Время ответа ткани зависит от силы раздражения: чем больше сила раздражителя, тем меньше времени он должен действовать, чтобы вызвать возбуждение ткани и, наоборот.

Закон «аккомодации» Чтобы вызвать возбуждение, раздражитель должен нарастать достаточно быстро. При действии медленно нарастающего тока, возбуждение не возникает, так как происходит приспособление возбудимой ткани к действию раздражителя. Это явление называется аккомодацией.

Закон «полярного действия» постоянного тока При действии постоянного тока возбуждение возникает только в момент замыкания и размыкания цепи. При замыкании – под катодом, а при размыкании – под анодом. Возбуждение под катодом больше, чем под анодом.

Физиология нервного ствола По структуре различают миелиновые и безмиелиновые нервные волокна. В миелиновых – возбуждение распространяется скачкообразно. В безмиелиновых – непрерывно вдоль всей мембраны, с помощью локальных токов.

Законы проведения возбуждения по н/в 1. Закон двухстороннего проведения возбуждения: возбуждение по нервному волокну может распространяться в двух направлениях от места его раздражения – центростремительно и центробежно. 2. Закон изолированного проведения возбуждения: каждое нервное волокно, входящее в состав нерва, проводит возбуждение изолированно (ПД не передается от одного волокна на другое). 3. Закон анатомической и физиологической целостности нервного волокна: для проведения возбуждения необходимы анатомическая (структурная) и физиологическая (функциональная) целостность нервного волокна.

Учение о парабиозе Разработал Н. Е. Введенский в 1891 году Фазы парабиоза Уравнительная Парадоксальная Тормозная

Нервно-мышечный синапс – это структурно-функциональное образование, которое обеспечивает передачу возбуждения с нервного волокна на мышечное. Синапс состоит из следующих структурных элементов: 1 — пресинаптической мембраны (это часть мембраны нервного окончания, которая контактирует с мышечным волокном); 2 — синаптической щели (её ширина 20 -30 нм); 3 — постсинаптической мембраны (концевая пластинка); В нервном окончании располагаются многочисленные синаптические пузырьки, содержащие химический посредник передачи возбуждения с нерва на мышцу – медиатор. В нервно-мышечном синапсе медиатором является ацетилхолин. В каждом пузырьке – около 10 000 молекул ацетилхолина.

Этапы нервно-мышечной передачи Первый этап – выброс ацетилхолина (АХ) в синаптическую щель. Он начинается с деполяризации пресинаптической мембраны. При этом активируются Са-каналы. Кальций по градиенту концентрации входит в нервное окончание и способствует выбросу путем экзоцитоза ацетилхолина из синаптических пузырьков в синаптическую щель. Второй этап: медиатор (АХ) путем диффузии достигает постсинаптической мембраны, где взаимодействует с холинорецептором (ХР). Третий этап – возникновение возбуждения в мышечном волокне. Ацетилхолин взаимодействует с холинорецептором на постсинаптической мембране. При этом активируются хемовозбудимые Na -каналы. Поток ионов Na+ из синаптической щели внутрь мышечного волокна (по градиенту концентрации) вызывает деполяризацию постсинаптической мембраны. Возникает потенциал концевой пластинки (ПКП). Четвертый этап – удаление АХ из синаптической щели. Этот процесс происходит под действием фермента – ацетилхолинэстеразы.

Ресинтез АХ Для передачи через синапс одного ПД требуется около 300 пузырьков с АХ. Поэтому необходимо постоянное восстановление запасов АХ. Ресинтез АХ происходит: За счет продуктов распада (холина и уксусной кислоты); Новый синтез медиатора; Подвоз необходимых компонентов по нервному волокну.

Нарушение синаптической проводимости Некоторые вещества могут частично или полностью блокировать нервно-мышечную передачу. Основные пути блокирования: а) блокада проведения возбуждения по нервному волокну (местные анестетики); б) нарушение синтеза ацетилхолина в пресинаптическом нервном окончании, в) угнетение ацетилхолинэстеразы (ФОС); г) связывание холинорецептора (-бунгаротоксин) или длительное вытеснение АХ (кураре); инактивация рецепторов (сукцинилхолин, декаметоний).

Двигательные единицы К каждому мышечному волокну подходит отросток мотонейрона. Как правило, 1 мотонейрон иннервирует несколько мышечных волокон. Это и есть двигательная (или моторная) единица. Двигательные единицы различаются размерами: объемом тела мотонейрона, толщиной его аксона и числом мышечных волокон, входящих в двигательную единицу.

Физиология мышц Функции мышц и их значение. Физиологические свойства мышц. Виды мышечного сокращения. Механизм мышечного сокращения. Работа, сила и утомление мышц.

18 Функции мышц В организме существуют 3 вида М. (скелетные, сердечные, гладкие), которые осуществляют Передвижение в пространстве Взаимоперемещение частей тела Поддержание позы (сидя, стоя) Выработку тепла (терморегуляция) Передвижение крови, лимфы Вдох и выдох Передвижение пищи в ЖКТ Защиту внутренних органов

19 Свойства мышц М. обладают следующими свойствами: 1. Возбудимость; 2. Проводимость; 3. Сократимость; 4. Эластичность; 5. Растяжимость.

20 Виды сокращения мышц: 1. Изотонические – когда при сокращении изменяется длина мышц (они укорачиваются), но напряжение (тонус) мышц при этом остается постоянным. Изометрические сокращение характеризуются повышением тонуса мышц, при этом длина мышцы не меняется. Ауксотонические (смешанные) – сокращения, при которых меняется и длина, и тонус мышц.

21 Виды сокращения мышц: Различают также одиночные и тетанические сокращения мышц. Одиночные сокращения возникают в ответ на действие редких одиночных импульсов. При высокой частоте раздражающих импульсов происходит суммация мышечных сокращений, которая вызывает длительное укорочение мышцы – тетанус.

Зубчатый тетанус Возникает в условиях когда каждый последующий импульс попадает в период расслабления одиночного мышечного сокращения

Гладкий тетанус Возникает в условиях когда каждый последующий импульс попадает в период укорочения одиночного мышечного сокращения.

31 Механизм мышечного сокращения (теория скольжения): Переход возбуждения с нерва на мышцу (через нервно-мышечный синапс). Распространение ПД вдоль мембраны мышечного волокна (сарколемме) и в глубь мышечного волокна по Т- трубочкам (поперечным трубочкам – углублениям сарколеммы в саркоплазму) Высвобождение ионов Ca++ из боковых цистерн саркоплазматического ретикулума (депо кальция) и диффузия его к миофибриллам. Взаимодействие Ca++ с белком – тропонином, находящимся на актиновых нитях. Освобождение центров связывания на актине и контакт поперечных мостиков миозина с этими участками актина. Высвобождение энергии АТФ и скольжение актиновых нитей вдоль миозиновых нитей. Это приводит к укорочению миофибриллы. Далее активируется кальциевый насос, который обеспечивает активный транспорт Са из саркоплазмы в саркоплазматический ретикулм. Снижается концентрация Са в саркоплазме, в результате происходит расслабление миофибриллы.

Сила мышц Максимальный груз, который мышца подняла, или максимальное напряжение, которое она развивает при своем сокращении называют силой мышцы. Измеряется она в килограммах. Сила мышцы зависит от толщины мышцы и её физиологического поперечного сечения (это сумма поперечных сечений всех мышечных волокон, составляющих эту мышцу). В мышцах с продольно расположенными мышечными волокнами физиологическое поперечное сечение совпадает с геометрическим. У мышц с косым расположением волокон (мышцы перистого типа) физиологическое поперечное сечение значительно превосходит геометрическое сечение. Они относятся к силовым мышцам.

Виды мышц А — параллельная Б — перистая В — веретенообразная

Работа мышцы Поднимая груз, мышца выполняет механическую работу, которая измеряется произведением массы груза на высоту его подъема и выражается в килограммометрах. A = F x S , где F – масса груза, S – высота его подъема Если F =0, то и работа А=0 Если S =0, то и работа А=0 Максимальная работа мышцей совершается при средних нагрузках (закон «средних нагрузок).

Утомлением называют временное снижение работоспособности мышц в результате длительных, чрезмерных нагрузок, которое исчезает после отдыха. Утомление — это сложный физиологический процесс, связанный, прежде всего, с утомлением нервных центров. Согласно теории «засорения» (Е. Пфлюгер) определенную роль в развитии утомления играет накопление в работающей мышце продуктов обмена (молочная кислота и др.). Согласно теории «истощения» (К. Шифф) утомление вызвано постепенным истощением в работающих мышцах энергетических запасов (АТФ, гликоген). Обе эти теории сформулированы на основании данных, полученных в экспериментах на изолированной скелетной мышце и объясняют утомление односторонне и упрощенно.

Теория активного отдыха До настоящего времени единой теории, объясняющей причины и сущность утомления нет. В естественных условиях утомление двигательного аппарата организма является многофакторным процессом. И. М. Сеченов (1903), исследуя на сконструированном им эргографе для двух рук работоспособность мышц при поднятии груза, установил, что работоспособность утомленной правой руки восстанавливается полнее и быстрее после активного отдыха, т. е. отдыха сопровождаемого работой левой руки. Таким образом, активный отдых является более эффективным средством борьбы с утомлением мышц, чем простой покой. Причину восстановления работоспособности мышц в условиях активного отдыха Сеченов связывал с действием на ЦНС афферентных импульсов от мышечных, сухожильных рецепторов работающих мышц.

Понятие о парабиозе (para - около, bios - жизнь) в физиологию нервной системы введено Н. Е. Введенским. В 1901 г. вышла в свет монография Н. Е. Введенского "Возбуждение, торможение и наркоз", в которой он на основании своих исследований высказал предположение о единстве процессов возбуждения и торможения.

Н. Е. Введенский обнаружил, что возбудимые ткани на самые разнообразные (эфир, кокаин, постоянный ток и т. д.) чрезвычайно сильные воздействия отвечают своеобразной фазной реакцией, одинаковой во всех случаях, которую он назвал парабиозом.

Н. Е. Введенский изучал явление парабиоза на нервах, мышцах, железах, спинном мозге и пришел к выводу о том, что парабиоз - это общая, универсальная реакция возбудимых тканей на сильное или длительное воздействие.

Сущность парабиоза состоит в том, что под влиянием раздражителя в возбудимых тканях изменяются их физиологические свойства, в первую очередь резко снижается лабильность.

Классические опыты Н. Е. Введенского по изучению парабиоза были выполнены на нервно-мышечном препарате лягушки. Нерв на небольшом участке подвергали повреждению (альтерация) химическими веществами (кокаин, хлороформ, фенол, хлорид калия), сильным фарадическим током, механическим фактором. Затем наносили раздражение электрическим током на альтерированный участок нерва или же выше его. Таким образом, импульсы должны были или возникать в альтерированном отрезке нерва, или проходить через него на своем пути к мышце. Сокращение мышцы свидетельствовало о проведении возбуждения по нерву. Схема опыта Н. Е. Введенского представлена на рис. 62.

Рис. 62. Схема опыта Н. Е. Введенского по изучению парабиоза. А - электроды для раздражения нормального (неповрежденного) участка нерва; Б - электроды для раздражения "парабиотического участка нерва"; В - отводящие электроды; Г - телефон; К 1 , К 2 , К 3 - телеграфные ключи; S 1 , S 2 и Р 1 , Р 2 - первичные и вторичные обмотки индукционных катушек; М - мышца

Развитие парабиоза протекает в три стадии: провизорную, парадоксальную и тормозную.

Первая стадия парабиоза - провизорная, уравнительная, или стадия трансформации . Эта стадия парабиоза предшествует остальным, отсюда ее название - провизорная. Уравнительной ее называют потому, что в этот период развития парабиотического состояния мышца отвечает одинаковыми по амплитуде сокращениями на сильные и слабые раздражения, наносимые на участок нерва, расположенный выше альтерированного. В первую же стадию парабиоза наблюдается трансформация (переделка, перевод) частых ритмов возбуждения в более редкие. Все описанные изменения ответной реакции мышцы и характера возникновения волн возбуждения в нерве под влиянием раздражения являются результатом ослабления функциональных свойств, особенно лабильности, в альтерированном участке нерва.

Вторая стадия парабиоза - парадоксальная . Эта стадия возникает в результате продолжающихся и углубляющихся изменений функциональных свойств парабиотического отрезка нерва. Особенностью этой стадии является парадоксальное отношение альтерированного участка нерва к слабым (редким) или сильным (частым) волнам возбуждения, приходящим сюда с нормальных участков нерва. Редкие волны возбуждения проходят через парабиотический отрезок нерва и обусловливают сокращение мышцы. Частые же волны возбуждения либо совсем не проводятся, как бы затухают здесь, что наблюдается при полном развитии этой стадии, либо вызывают такой же сократительный эффект мышцы, как и редкие волны возбуждения, или менее выраженный (рис. 63).

Третья стадия парабиоза - тормозная . Характерной особенностью этой стадии является то, что в парабиотическом участке нерва не только резко снижены возбудимость и лабильность, но он также теряет способность проводить к мышце и слабые (редкие) волны возбуждения.

Парабиоз - явление обратимое. При устранении причины, вызвавшей парабиоз, физиологические свойства нервного волокна восстанавливаются. При этом наблюдается обратное развитие фаз парабиоза - тормозная, парадоксальная, уравнительная.

Наличие электроотрицательности в альтерированном участке нерва позволило Н. Е. Введенскому рассматривать парабиоз как особый вид возбуждения, локализованный в месте его возникновения и не способный распространяться.

Парабиоз Введенского

Понятие о парабиозе (para - около, bios

Парабиоз - это обратимое изменение, переходящее при углублении и усилении действия вызвавшего его агента в необратимое нарушение жизнедеятельности — смерть

Первая стадия парабиоза - провизорная

Вторая стадия парабиоза - парадоксальная .

Третья стадия парабиоза - тормозная .

Вывод :

Парабиоз

Просмотр содержимого документа
«Парабиоз Введенского»

Парабиоз Введенского

Н. Е. Введенский обнаружил, что возбудимые ткани на самые разнообразные (эфир, кокаин, постоянный ток и т. д.) чрезвычайно сильные воздействия отвечают своеобразной фазной реакцией, одинаковой во всех случаях, которую он назвал парабиозом.

Н. Е. Введенский изучал явление парабиоза на нервах, мышцах, железах, спинном мозге и пришел к выводу о том, что парабиоз - это общая, универсальная реакция возбудимых тканей на сильное или длительное воздействие.

Понятие о парабиозе (para - около, bios - жизнь) в физиологию нервной системы введено Н. Е. Введенским. В 1901 г. вышла в свет монография Н. Е. Введенского "Возбуждение, торможение и наркоз", в которой он на основании своих исследований высказал предположение о единстве процессов возбуждения и торможения.

Парабиоз - это обратимое изменение, переходящее при углублении и усилении действия вызвавшего его агента в необратимое нарушение жизнедеятельности - смерть

Сущность парабиоза состоит в том, что под влиянием раздражителя в возбудимых тканях изменяются их физиологические свойства, в первую очередь резко снижается лабильность.

Классические опыты Н. Е. Введенского по изучению парабиоза были выполнены на нервно-мышечном препарате лягушки. Нерв на небольшом участке подвергали повреждению (альтерация) химическими веществами (кокаин, хлороформ, фенол, хлорид калия), сильным фарадическим током, механическим фактором. Затем наносили раздражение электрическим током на альтерированный участок нерва или же выше его.

Таким образом, импульсы должны были или возникать в альтерированном отрезке нерва, или проходить через него на своем пути к мышце. Сокращение мышцы свидетельствовало о проведении возбуждения по нерву.

Первая стадия парабиоза - провизорная , уравнительная, или стадия трансформации. Эта стадия парабиоза предшествует остальным, отсюда ее название - провизорная. Уравнительной ее называют потому, что в этот период развития парабиотического состояния мышца отвечает одинаковыми по амплитуде сокращениями на сильные и слабые раздражения, наносимые на участок нерва, расположенный выше альтерированного. В первую же стадию парабиоза наблюдается трансформация (переделка, перевод) частых ритмов возбуждения в более редкие. Все описанные изменения ответной реакции мышцы и характера возникновения волн возбуждения в нерве под влиянием раздражения являются результатом ослабления функциональных свойств, особенно лабильности, в альтерированном участке нерва.

Вторая стадия парабиоза - парадоксальная . Эта стадия возникает в результате продолжающихся и углубляющихся изменений функциональных свойств парабиотического отрезка нерва. Особенностью этой стадии является парадоксальное отношение альтерированного участка нерва к слабым (редким) или сильным (частым) волнам возбуждения, приходящим сюда с нормальных участков нерва. Редкие волны возбуждения проходят через парабиотический отрезок нерва и обусловливают сокращение мышцы. Частые же волны возбуждения либо совсем не проводятся, как бы затухают здесь, что наблюдается при полном развитии этой стадии, либо вызывают такой же сократительный эффект мышцы, как и редкие волны возбуждения, или менее выраженный.

Третья стадия парабиоза - тормозная . Характерной особенностью этой стадии является то, что в парабиотическом участке нерва не только резко снижены возбудимость и лабильность, но он также теряет способность проводить к мышце и слабые (редкие) волны возбуждения.

Вывод :

Парабиоз - явление обратимое. При устранении причины, вызвавшей парабиоз, физиологические свойства нервного волокна восстанавливаются. При этом наблюдается обратное развитие фаз парабиоза - тормозная, парадоксальная, уравнительная.

Наличие электроотрицательности в альтерированном участке нерва позволило Н. Е. Введенскому рассматривать парабиоз как особый вид возбуждения, локализованный в месте его возникновения и не способный распространяться.