Минутный объем вентиляции. Внешнее дыхание и объемы легких

Показатели легочной вентиляции в значительной мере зависят от конституции, физической тренировки, роста, массы тела, пола и возраста человека, поэтому полученные данные необходимо сравнивать с так называемыми должными величинами. Должные величины высчитывают по специальным номограммам и формулам, в основе которых лежит определение должного основного обмена. Многие функциональные методы исследования в течением времени сократились до определенного стандартного объема.

Измерение легочных объемов

Дыхательный объем

Дыхательный объем (ДО) - это объем воздуха, вдыхаемого и выдыхаемого при нормальном дыхании, равный в среднем 500 мл (с колебаниями от 300 до 900 мл). Из него около 150 мл составляет объем воздуха функционального мертвого пространства (ВФМП) в гортани, трахее, бронхах, который не принимает участия в газообмене. Функциональная роль ВФМП заключается в том, что он смешивается с вдыхаемым воздухом, увлажняя и согревая его.

Резервный объем выдоха

Резервный объем выдоха - это объем воздуха, равныйу1500 -2000 мл, который человек может выдохнуть, если после нормального выдоха сделает максимальный выдох.

Резервный объем вдоха

Резервный объем вдоха - это объем воздуха, который человек может вдохнуть, если после нормального вдоха сделает максимальный вдох. Равен 1500 - 2000 мл.

Жизненная емкость легких

Жизненная емкость легких (ЖЕЛ) - равна сумме резервных объемов вдоха и выдоха и дыхательного объема (в среднем 3700 мл) и составляет тот объем воздуха, который человек в состоянии выдохнуть при самом глубоком выдохе после максимального вдоха.

Остаточный объем

Остаточный объем (ОО) - это объем воздуха, который остается в легких после максимального выдоха. Равен 1000 - 1500 мл.

Общая емкость легких

Общая (максимальная) емкость легких (ОЕЛ) является суммой дыхательного, резервных (вдох и выдох) и остаточного объемов и составляет 5000 - 6000 мл.

Исследование дыхательных объемов нужно для оценки компенсации дыхательной недостаточности путем увеличения глубины дыхания (вдоха и выдоха).

Спирография легких

Спирография легких позволяет получить наиболее достоверные данные. Кроме измерения легочных объемов, с помощью спирографа можно получить ряд дополнительных показателей (дыхательный и минутный объемы вентиляции и др.). Данные записываются в виде спирограммы, по которой можно судить о норме и патологии.

Исследование интенсивности легочной вентиляции

Минутный объем дыхания

Минутный объем дыхания определяется умножением дыхательного объема на частоту дыхания, в среднем равен 5000 мл. Более точно определяется с помощью спирографии.

Максимальная вентиляция легких

Максимальная вентиляция легких ("предел дыхания") - это количество воздуха, которое может провентилироваться легкими при максимальном напряжении дыхательной системы. Определяют спирометрией при максимально глубоком дыхании с частотой около 50 в мин., в норме равно 80 - 200 мл.

Резерв дыхания

Резерв дыхания отражает функциональные возможности дыхательной системы человека. У здорового человека равен 85% от максимальной вентиляции легких, а при дыхательной недостаточности уменьшается до 60 - 55% и ниже.

Все эти пробы позволяют изучать состояние легочной вентиляции, ее резервы, необходимость в которых может возникнуть при выполнении тяжелой физической работы или при заболевании органов дыхания.

Исследование механики дыхательного акта

Этот метод позволяет определить соотношения вдоха и выдоха, дыхательного усилия в разные фазы дыхания.

ЭФЖЕЛ

Экспираторную форсированную жизненную емкость легких (ЭФЖЕЛ), исследуют по Вотчалу - Тиффно. Она измеряется так же, как при определении ЖЕЛ, но при максимально быстром, форсированном выдохе. У здоровых лиц она оказывается на 8- 11% меньше, чем ЖЕЛ, в основном за счет увеличения сопротивления току воздуха в мелких бронхах. При ряде заболеваний, сопровождающихся увеличением сопротивления в мелких бронхах, например при бронхо-обструктивных синдромах, эмфиземе легких, ЭФЖЕЛ изменяется.

ИФЖЕЛ

Инспираторная форсированная жизненная емкость легких (ИФЖЕЛ) определяется при максимально быстром форсированном вдохе. Она не изменяется при эмфиземе, но уменьшается при нарушении проходимости дыхательных путей.

Пневмотахометрия

Пневмотахометрия

Пневмотахометрия оценивает изменение "пиковых" скоростей воздушного потока при форсированном вдохе и выдохе. Она позволяет оценить состояние бронхиальной проходимости. ###Пневмотахография

Пневмотахография проводится с помощью пневмотахографа, который регистрирует движение струи воздуха.

Пробы на выявление явной или скрытой дыхательной недостаточности

Основаны на определении потребления кислорода и кислородного дефицита с помощью спирографии и эргоспирографии. Этим методом можно определить потребление кислорода и кислородный дефицит у больного при выполнении им определенной физической нагрузки и в покое.

К основным методам исследования дыхания у человека относятся:

· Спирометрия - метод определения жизненной емкости легких (ЖЕЛ) и составляющих ее объёмов воздуха.

· Спирография - метод графической регистрации показателей функции внешнего звена системы дыхания.

· Пневмотахометрия - метод измерения максимальной скорости вдоха и выдоха при форсированном дыхании.

· Пневмография - метод регистрации дыхательных движений грудной клетки.

· Пикфлуорометрия - простой способ самооценки и постоянного контроля проходимости бронхов. Прибор - пикфлоуметр позволяет измерять объем проходящего воздуха при выдохе в единицу времени (пиковая скорость выдоха).

· Функциональные пробы (Штанге и Генче).

Спирометрия

Функциональное состояние легких зависит от возраста, пола, физического развития и ряда других факторов. Наиболее распространенной характеристикой состояния легких является измерение легочных объёмов, которые свидетельствуют о развитии органов дыхания и функциональных резервах дыхательной системы. Объём вдыхаемого и выдыхаемого воздуха можно измерить с помощью спирометра..

Спирометрия - это важнейший способ оценки функции внешнего дыхания. Данным методом определяется жизненная емкость легких, легочные объемы, а также объемная скорость воздушного потока. При проведении спирометрии человек вдыхает и выдыхает с максимальной силой. Наиболее важные данные дает анализ экспираторного маневра - выдоха. Легочные объемы и емкости называются статическими (основными) дыхательными показателями. Различают 4 первичных легочных объема и 4 емкости.

Жизненная ёмкость лёгких

Жизненная ёмкость лёгких - это то, максимальное количество воздуха, которое можно выдохнуть после максимального вдоха. При исследовании определяется фактическая ЖЕЛ, которая сравнивается с должной ЖЕЛ (ДЖЕЛ) и рассчитывается по формуле (1). У взрослого человека среднего роста ДЖЕЛ составляет 3-5 литров. У мужчин её величина примерно на 15% больше, чем у женщин. Школьники в возрасте 11-12 лет имеют ДЖЕЛ около 2 литров; дети до 4 лет - 1 литр; новорожденные - 150 мл.

ЖЕЛ=ДО+РОвд+РОвыд, (1)

Где ЖЕЛ - жизненная ёмкость лёгких; ДО- дыхательный оббьем; РОвд- резервный объём вдоха; РОвыд- резервный объём выдоха.

ДЖЕЛ (л) = 2,5Чрост (м). (2)

Дыхательный объём

Дыхательный объём (ДО), или глубина дыхания, - объем вдыхаемого и

выдыхаемого в покое воздуха. У взрослых людей ДО=400-500 мл, у детей 11-12 лет - около 200 мл, у новорожденных - 20-30 мл.

Резервный объём выдоха

Резервный оббьем выдоха (РОВЫД) - максимальный объем, который можно с усилием выдохнуть после спокойного выдоха. РОвыд = 800-1500 мл.

Резервный объём вдоха

Резервный объём вдоха (РОВД) - максимальный объем воздуха, который можно дополнительно вдохнуть после спокойного вдоха. Резервный объём вдоха можно определить двумя способами: вычислить или измерить спирометром. Для вычисления необходимо из величины ЖЕЛ вычесть сумму дыхательного и резервного объёмов выдоха. Для определения резервного объёма вдоха с помощью спирометра необходимо набрать в спирометр от 4 до 6 литров воздуха и после спокойного вдоха из атмосферы сделать максимальный вдох из спирометра. Разность между первоначальным объёмом воздуха в спирометре и объёмом, оставшимся в спирометре после глубокого вдоха, соответствует резервному объёму вдоха. РОвд =1500-2000 мл.

Остаточный объём

Остаточный объём (ОО)- объем воздуха, остающийся в легких даже после максимального выдоха. Измеряется только непрямыми методами. Принцип одного из них заключается в том, что в легкие вводят инородный газ типа гелия (метод разведения) и по изменению его концентрации рассчитывают объём легких. Остаточный объём составляет 25-30% от величины ЖЕЛ. Принимают ОО=500-1000 мл.

Общая ёмкость лёгких

Общая ёмкость лёгких (ОЕЛ) - количество воздуха, находящееся в легких после максимального вдоха. ОЕЛ = 4500-7000 мл. Рассчитывается по формуле (3)

ОЕЛ=ЖЕЛ+ОО. (3)

Функциональная остаточная ёмкость лёгких

Функциональная остаточная ёмкость лёгких (ФОЕЛ) - количество воздуха, остающегося в легких после спокойного выдоха.

Рассчитывается по формуле (4)

ФОЕЛ=РОвд. (4)

Ёмкость входа

Ёмкость входа (ЕВД) - максимальный объем воздуха, который можно вдохнуть после спокойного выдоха. Рассчитывается по формуле (5)

ЕВД=ДО+РОвд. (5)

Кроме статических показателей, характеризующих степень физического развития дыхательного аппарата, существуют и дополнительные - динамические показатели, дающие информацию об эффективности вентиляции легких и функциональном состоянии дыхательных путей.

Форсированная жизненная ёмкость легких

Форсированная жизненная ёмкость легких (ФЖЕЛ) - количество воздуха, которое можно выдохнуть при форсированном выдохе после максимального вдоха. В норме разница между ЖЕЛ и ФЖЕЛ, равна 100-300 мл. Увеличение этой разницы до 1500 мл и более указывает на сопротивление току воздуха вследствие сужения просвета мелких бронхов. ФЖЕЛ = 3000-7000 мл.

Анатомическое мёртвое пространство

Анатомическое мёртвое пространство (ДМП)- объем, в котором не происходит газообмена (носоглотка, трахея, крупные бронхи) - прямому определению не подлежит. ДМП = 150 мл.

Частота дыхания

Частота дыхания (ЧД) - количество дыхательных циклов за одну минуту. ЧД = 16-18 д.ц./мин.

Минутный объём дыхания

Минутный объём дыхания (МОД) - количество вентилируемого в легких воздуха за 1 минуту.

МОД = ДО + ЧД. МОД = 8-12 л.

Альвеолярная вентиляция

Альвеолярная вентиляция (АВ) - объем, выдыхаемого воздуха, поступающего в альвеолы. АВ = 66 - 80% от МОД. АВ = 0,8л/мин.

Резерв дыхания

Резерв дыхания (РД) - показатель, характеризующий возможности увеличения вентиляции. В норме РД составляет 85% максимальной вентиляции легких (МВЛ). МВЛ = 70-100 л/мин.

ИВЛ! Если его понять — это равноценно появлению, как в фильмах, у супергероя (доктор) супер оружия (если доктор понимает тонкости ИВЛ) против смерти пациента.

Чтобы понять ИВЛ нужно базовые знания: физиология = патофизиология(обструкция или рестрикция) дыхания; основные части, строение аппарата ИВЛ; обеспечение газами(кислород, атмосферный воздух, сжатый газ) и дозирование газов; адсорберы; элиминация газов; дыхательные клапана; дыхательные шланги; дыхательный мешок; система увлажнения; дыхательный контур(полузакрытый, закрытый, полуоткрытый, открытый) и т.д.

Все аппараты ИВЛ проводят вентиляцию по объему или по давлению (как бы они не назывались; в зависимости какой режим установил доктор). В основном доктор устанавливает режим ИВЛ при обструктивных заболеваниях легких (или во время наркоза) по объему , при рестрикции по давлению .

Основные типы ИВЛ обозначаются так:

CMV (Continuous mandatory ventilation) — Управляемая (искусственная) вентиляция легких

VCV (Volume controlled ventilation) — ИВЛ, управляемая по объему

PCV (Pressure controlled ventilation) — ИВЛ, управляемая по давлению

IPPV (Intermittent positive pressure ventilation) — ИВЛ с перемежающимся положительным давлением на вдохе

ZEEP (Zero endexpiratory pressure) — ИВЛ с давлением в конце выдоха, равным атмосферному

PEEP (Positive endexpiratory pressure) — Положительное давление в конце выдоха (ПДКВ)

CPPV (Continuous positive pressure ventilation) — ИВЛ с ПДКВ

IRV (Inversed ratio ventilation) — ИВЛ с обратным (инверсированным) отношением вдох:выдох (от 2:1 до 4:1)

SIMV (Synchronized intermittent mandatory ventilation) — Синхронизированная перемежающаяся принудительная вентиляция легких = Сочетание спонтанного и аппаратного дыхания, когда при уменьшении частоты спонтанного дыхания до определенной величины, при сохраняющихся попытках вдоха, преодолевая уровень установленного триггера синхронно подключается аппаратное дыхание

Всегда нужно смотреть на буквы..P.. или..V.. Если Р (Рressure) значит по далению, если V (Volume) по объему.

  1. Vt – дыхательный объем,
  2. f – частоту дыхания, MV – минутную вентиляцию
  3. PEEP – ПДКВ=положительное давление в конце выдоха
  4. Tinsp – время вдоха;
  5. Pmax — давления вдоха или максимальное давление дыхательных путях.
  6. Газоток кислорода и воздуха.
  1. Дыхательный объем (Vt, ДО) устанавливаем от 5мл до 10 мл/кг (в зависимости от патологии, в норме 7-8 мл на кг ) = сколько пациент должен вдохнуть объема за раз. Но для этого надо узнать идеальную(должную, предсказанную) массу тела данного пациента по формуле (NB! запомнить):

Мужчины: ИМТ(кг)=50+0,91·(рост, см – 152,4)

Женщины: ИМТ (кг)=45,5+0,91·(рост, см – 152,4).

Пример: мужчина 150 кг весить. Это не значить что мы должны установить дыхательный объем 150кг·10мл=1500 мл. Сперва, рассчитываем ИМТ=50+0,91·(165см-152,4)=50+0,91·12,6=50+11,466=61,466 кг должен весить наш пациент. Представляете, ой аллай десейші! Для мужчины с весом 150 кг и ростом 165 см, мы должны установить дыхательный объем(ДО) от 5мл/кг (61,466·5=307,33 мл) до 10мл/кг (61,466·10=614,66 мл) в зависимости от патологии и растяжимости легких.

2. Второй параметр, который доктор должен установить, это частота дыхания (f). В норме частота дыхания от 12 до 18 в минуту в покое. И мы не знаем, какую частоту установить 12 или 15, 18 или 13? Для этого мы должны рассчитать должный МОД (MV). Синонимы минутного объема дыхания(МОД)=минутная вентиляция легких (МВЛ), может еще как то… Это значить, сколько нужно пациенту воздуха (мл, л) в минуту.

МОД=ИМТ кг:10+1

по формуле Дарбиняна (устаревшая формула, приводит часто к гипервентиляции).

Или современный расчет: МОД=ИМТкг·100.

(100%, или 120%-150% в зависимости от температуры тела пациента.., от основного обмена короче).

Пример: Пациент женщина, весит 82 кг, рост при этом 176 см. ИМТ=45,5+0,91·(рост, см – 152,4)=45,5+0,91·(176 см-152,4)=45,5+0,91·23,6=45,5+21,476=66,976 кг должна весит. МОД=67(сразу округлил)·100=6700 мл или 6,7 литров в минуту. Теперь только после этих расчетов можем узнать частоту дыхания. f =МОД:ДО=6700 мл: 536 мл=12,5 раз в минуту, значит 12 или 13 раз.

3. Устанавливаем РЕЕР . В норме (раньше) 3-5 mbar. Сейчас можно 8-10 mbar у пациентов с нормальными легкими.

4. Время вдоха в секундах устанавливаем по соотношению вдоха к выдоху: I : E =1:1,5-2 . В этом параметре пригодятся знания про дыхательный цикл, вентиляционно-перфузионное соотношение и т.д.

5. Pmax, Рinsp пиковое давление устанавливаем чтобы не нанести баротравму или не разорвать легкие. В норме думаю 16-25 mbar, в зависимости от эластичности легких, веса пациента, от растяжимости грудной клетки и т.д. По-моему знанию легкие могут разорватся при Рinsp более 35-45 mbar.

6. Фракция вдыхаемого кислорода(FiO 2) должна быть не более 55% во вдыхаемой дыхательной смеси.

Все расчеты и знания нужны для того, чтобы у пациента были такие показатели: РаО 2 =80-100 мм рт.ст.; РаСО 2 =35-40 мм рт.ст. Всего лишь, ой аллай десейші!

Один из основных методов оценки вентиляционной функции легких, применяемых в практике врачебно-трудовой экспертизы, - спирография , позволяющая определить статистические легочные объемы - жизненная емкость легких (ЖЕЛ), функциональная остаточная емкость (ФОЕ) , остаточный объем легких, общая емкость легких, динамические легочные объемы - дыхательный объем, минутный объем, максимальная вентиляция легких.

Способность полностью поддерживать газовый состав артериальной крови еще не является гарантией отсутствия легочной недостаточности у пациентов с бронхолегочной патологией. Артериализация крови может поддерживаться на близком к норме уровне за счет компенсаторного перенапряжения механизмов, обеспечивающих ее, что также является признаком легочной недостаточности. К таким механизмам относится прежде всего функция вентиляции легких .

Адекватность объемных параметров вентиляции определяется «динамическими легочными объемами », к которым относят дыхательный объем и минутный объем дыхания (МОД).

Дыхательный объем в покое у здорового человека составляет около 0,5 л. Должный МОД получают, умножая должную величину основного обмена на коэффициент 4,73. Полученные таким образом величины лежат в пределах 6-9 л. Однако сравнение фактической величины МОД (определяется в условиях основного обмена или близких к нему) с должной имеет смысл лишь для суммарной оценки изменений величины, которая может включать как изменения собственно вентиляции, так и нарушения потребления кислорода.

Для оценки собственно вентиляционных отклонений от нормы необходимо учитывать коэффициент использования кислорода (КИО 2) - отношение поглощенного О 2 (в мл/мин) к МОД (в л/мин).

На основании коэффициента использования кислорода можно судить об эффективности вентиляции. У здоровых людей КИ в среднем 40.

При КИО 2 ниже 35мл/л вентиляция оказывается избыточной по отношению к потребленному кислороду (гипервентиляция ), при увеличении КИО 2 выше 45 мл/л речь идет о гиповентиляции .

Другой способ выражения газообменной эффективности легочной вентиляции - определение дыхательного эквивалента , т.е. того объема вентилируемого воздуха, который приходится на 100 мл потребленного кислорода: определяют отношение МОД к количеству потребленного кислорода (или углекислоты - ДЭ углекислоты).

У здорового человека 100 мл потребляемого кислорода или выделенной углекислоты обеспечиваются объемом вентилируемого воздуха, близким к 3 л/мин.

У больных с патологией легких при функциональных нарушениях газообменная эффективность оказывается сниженной, и потребление 100 мл кислорода требует большего, чем у здоровых объема вентиляции.

При оценке эффективности вентиляции увеличение частоты дыхания (ЧД) рассматривается как типичный признак дыхательной недостаточности, это целесообразно учитывать при трудовой экспертизе: при I степени дыхательной недостаточности ЧД не превышает 24, при II степени достигает 28 , при III степени ЧД очень большая.

Медицинская реабилитация / Под ред. В. М. Боголюбова. Книга I. - М., 2010. С. 39-40.

Проводящие пути

Нос - первые изменения поступающего воздуха происходят в носу, где он очищается, согревается и увлажняется. Этому способствует волосяной фильтр, преддверие и раковины носа. Интенсивное кровоснабжение слизистой оболочки и пещеристых сплетений раковин обеспечивает быстрое согревание или охлаждение воздуха до температуры тела. Испаряющаяся со слизистой оболочки вода увлажняет воздух на 75-80%. Длительное вдыхание воздуха пониженной влажности приводит к высыханию слизистой оболочки, попаданию сухого воздуха в легкие, развитию ателектазов, пневмонии и повышению сопротивления в воздухоносных путях.


Глотка отделяет пищу от воздуха, регулирует давление в области среднего уха.


Гортань обеспечивает голосовую функцию, с помощью надгортанника предотвращая аспирацию, а смыкание голосовых связок является одним из основных компонентов кашля.

Трахея — основной воздуховод, в ней согревается и увлажняется воздух. Клетки слизистой оболочки захватывают инородные вещества, а реснички продвигают слизь вверх по трахее.

Бронхи (долевые и сегментарные) заканчиваются концевыми бронхиолами.


Гортань, трахея и бронхи также участвуют в очищении, согревании и увлажнении воздуха.


Строение стенки проводящих воздухоносных путей (ВП) отличается от структуры дыхательных путей газообменной зоны. Стенка проводящих воздухоносных путей состоит из слизистой оболочки, слоя гладких мышц, подслизистой соединительной и хрящевой оболочек. Эпителиальные клетки воздухоносных путей снабжены ресничками, которые, ритмично колеблясь, продвигают защитный слой слизи в направлении носоглотки. Слизистая оболочка ВП и легочная ткань содержат макрофаги, фагоцитирующие и переваривающие минеральные и бактериальные частицы. В норме слизь из дыхательных путей и альвеол постоянно удаляется. Слизистая оболочка ВП представлена реснитчатым псевдомногослойным эпителием, а также секреторными клетками, выделяющими слизь, иммуноглобулины, комплемент, лизоцим, ингибиторы, интерферон и другие вещества. В ресничках содержится много митохондрий, обеспечивающих энергией их высокую двигательную активность (около 1000 движений в 1 мин.), что позволяет транспортировать мокроту со скоростью до 1 см/мин в бронхах и до 3 см/мин в трахее. За сутки из трахеи и бронхов в норме эвакуируется около 100 мл мокроты, а при патологических состояниях до 100 мл/час.


Реснички функционируют в двойном слое слизи. В нижнем находятся биологически активные вещества, ферменты, иммуноглобулины, концентрация которых в 10 раз больше, чем в крови. Это обуславливает биологическую защитную функцию слизи. Верхний слой ее механически защищает реснички от повреждений. Утолщение или уменьшение верхнего слоя слизи при воспалении или токсическом воздействии неизбежно нарушает дренажную функцию реснитчатого эпителия, раздражает дыхательные пути и рефлекторно вызывает кашель. Чихание и кашель защищают легкие от проникновения минеральных и бактериальных частиц.


Альвеолы


В альвеолах происходит газообмен между кровью легочных капилляров и воздухом. Общее число альвеол равно примерно 300 млн., а суммарная площадь их поверхности - примерно 80 м 2 . Диаметр альвеол составляет 0,2-0,3 мм. Газообмен между альвеолярным воздухом и кровью осуществляется путем диффузии. Кровь легочных капилляров отделена от альвеолярного пространства лишь тонким слоем ткани - так называемой альвеолярно-капиллярной мембраной, образованной альвеолярным эпителием, узким интерстициальным пространством и эндотелием капилляра. Общая толщина этой мембраны не превышает 1 мкм. Вся альвеолярная поверхность легких покрыта тонкой пленкой, называемой сурфактантом.

Сурфактант уменьшает поверхностное натяжение на границе между жидкостью и воздухом в конце выдоха, когда объем легкого минимален, увеличивает эластичность легких и играет роль противоотечного фактора (не пропускает пары воды из альвеолярного воздуха), в результате чего альвеолы остаются сухими. Он снижает поверхностное натяжение при уменьшении объема альвеолы во время выдоха и предупреждает её спадение; уменьшает шунтирование, что улучшает оксигенацию артериальной крови при более низком давлении и минимальном содержании О 2 во вдыхаемой смеси.


Сурфактантный слой состоит из:

1) собственно сурфактанта (микропленки из фосфолипидных или полипротеидных молекулярных комплексов на границе с воздушной средой);

2) гипофазы (глубжележащего гидрофильного слоя из белков, электролитов, связанной воды, фосфолипидов и полисахаридов);

3) клеточного компонента, представленного альвеолоцитами и альвеолярными макрофагами.


Основными химическими составляющими сурфактанта является липиды, белки и углеводы. Фосфолипиды (лецитин, пальмитиновая кислота, гепарин) составляют 80-90% его массы. Сурфактант покрывает непрерывным слоем и бронхиолы, понижает сопротивление при дыхании, поддерживает наполнение

При низком давлении растяжения, уменьшает действие сил, вызывающих накопление жидкости в тканях. Кроме того, сурфактант очищает вдыхаемые газы, отфильтровывает и улавливает вдыхаемые частицы, регулирует обмен воды между кровью и воздушной средой альвеолы, ускоряет диффузию СО 2 , обладает выраженным антиокислительным действием. Сурфактант очень чувствителен к различным эндо- и экзогенным факторам: нарушениям кровообращения, вентиляции и метаболизма, изменению РО 2 во вдыхаемом воздухе, загрязнению его. При дефиците сурфактанта возникают ателектазы и РДС новорожденных. Примерно 90-95% альвеолярного сурфактанта повторно перерабатывается, очищается, накапливается и ресекретируется. Период полувыведения компонентов сурфактанта из просвета альвеол здоровых легких составляет около 20 ч.

Легочные объёмы

Вентиляция легких зависит от глубины дыхания и частоты дыхательных движений. Оба этих параметра могут варьировать в зависимости от потребностей организма. Есть ряд объемных показателей, характеризующих состояние легких. Нормальные средние значения для взрослого человека следующие:


1. Дыхательный объем (ДО- VT - Tidal Volume) - объем вдыхаемого и выдыхаемого воздуха при спокойном дыхании. Нормальные значения - 7-9мл/кг.


2. Резервный объем вдоха (РОвд - IRV - Inspiratory Reserve Volume) - объем, который может дополнительно поступить после спокойного вдоха, т.е. разница между нормальной и максимальной вентиляцией. Нормальное значение: 2-2,5 л (около 2/3 ЖЕЛ).

3. Резервный объем выдоха (РОвыд - ERV - Expiratory Reserve Volume) - объем, который можно дополнительно выдохнуть после спокойного выдоха, т.е. разница между нормальным и максимальным выдохом. Нормальное значение: 1,0-1,5 л (около 1/3 ЖЕЛ).


4.Остаточный объем (ОО - RV - Residal Volume) - объем, остающийся в легких после максимального выдоха. Около 1,5-2,0 л.


5. Жизненная емкость легких (ЖЕЛ - VT - Vital Capacity) — количество воздуха, которое может быть максимально выдохнуто после максимального вдоха. ЖЕЛ является показателем подвижности легких и грудной клетки. ЖЕЛ зависит от возраста, пола, размеров и положения тела, степени тренированности. Нормальные значения ЖЕЛ - 60-70 мл/кг - 3,5-5,5 л.


6. Резерв вдоха (РВ) -Ёмкость вдоха (Евд - IC - Inspiritory Capacity) - максимальное количество воздуха, которое может поступить в легкие после спокойного выдоха. Равен сумме ДО и РОвд.

7. Общая емкость легких (ОЕЛ - TLC - Total lung capacity) или максимальная емкость легких - количество воздуха, содержащееся в легких на высоте максимального вдоха. Состоит из ЖЕЛ и ОО и рассчитывается как сумма ЖЕЛ и ОО. Нормальное значение около 6,0 л.
Исследование структуры ОЕЛ является решающим в выяснении путей увеличения или снижения ЖЕЛ, что может иметь существенное практическое значение. Увеличение ЖЕЛ может быть расценено положительно только в том случаи, если ОЕЛ не меняется или увеличивается, но меньше, чем ЖЕЛ, что происходит при увеличении ЖЕЛ за счет уменьшения ОО. Если одновременно с увеличением ЖЕЛ происходит еще большее увеличение ОЕЛ, то это нельзя считать положительным фактором. При ЖЕЛ ниже 70% ОЕЛ функция внешнего дыхания глубоко нарушена. Обычно при патологических состояниях ОЕЛ и ЖЕЛ изменяются одинаково, за исключением обструктивной эмфиземы легких, когда ЖЕЛ, как правило, уменьшается, ОО увеличивается, а ОЕЛ может оставаться нормальной или быть выше нормы.


8. Функциональная остаточная емкость (ФОЕ - FRC - Functional residual volume) - количество воздуха, которое остается в легких после спокойного выдоха. Нормальные значения у взрослых - от 3 до 3,5 л. ФОЕ = ОО + РОвыд. По определению ФОЕ - объем газа, который остается в легких при спокойном выдохе и может быть мерой области газообмена. Она образуется в результате баланса между противоположно направленными эластическими силами легких и грудной клетки. Физиологическое значение ФОЕ состоит в частичном обновлении альвеолярного объема воздуха во время вдоха (вентилируемый объем) и указывает на объем альвеолярного воздуха, постоянно находящегося в легких. Со снижением ФОЕ связаны развитие ателектазов, закрытие мелких дыхательных путей, уменьшение податливости легких, увеличение альвеолярно-артериального различия по О 2 в результате перфузии в ателектазированных участках легких, снижение вентиляционно-перфузионного соотношения. Обструктивные вентиляционные нарушения ведут к повышению ФОЕ, рестриктивные нарушения - к снижению ФОЕ.


Анатомическое и функциональное мертвое пространство


Анатомическим мертвым пространством называют объем воздухоносных путей, в котором не происходит газообмен. Это пространство включает носовую и ротовую полости, глотку, гортань, трахею, бронхи и бронхиолы. Объем мертвого пространства зависит от роста и положения тела. Приближенно можно считать, что у сидящего человека объем мертвого пространства (в миллилитрах) равен удвоенной массе тела (в килограммах). Таким образом, у взрослых он равен около 150-200 мл (2 мл/кг массы тела).


Под функциональным (физиологическим) мертвым пространством понимают все те участки дыхательной системы, в которых не происходит газообмена по причине сниженного или отсутствующего кровотока. К функциональному мертвому пространству в отличие от анатомического относятся не только воздухоносные пути, но также и те альвеолы, которые вентилируются, но не перфузируются кровью.


Альвеолярная вентиляция и вентиляция мертвого пространства

Часть минутного объема дыхания, достигающая альвеол, называется альвеолярной вентиляцией, остальная его часть составляет вентиляцию мертвого пространства. Альвеолярная вентиляция служит показателем эффективности дыхания в целом. Именно от этой величины зависит газовый состав, поддерживаемый в альвеолярном пространстве. Что касается минутного объема, то он лишь в незначительной степени отражает эффективность вентиляции легких. Так, если минутный объем дыхания нормальный (7л/мин), но дыхание частое и поверхностное (ДО-0,2 л, ЧД-35/мин), то вентилироваться

Будет главным образом мертвое пространство, в которое воздух поступает раньше, чем в альвеолярное; в этом случае вдыхаемый воздух почти не будет достигать альвеол. Поскольку объем мертвого пространства постоянен, альвеолярная вентиляция тем больше, чем глубже дыхание и меньше частота.


Растяжимость (податливость) легочной ткани
Растяжимость легких является мерой эластической тяги, а также эластического сопротивления легочной ткани, которое преодолевается в процессе вдоха. Иначе говоря, растяжимость — это мера упругости легочной ткани, т. е. её податливость. Математически растяжимость выражается в виде частного от изменения объема легких и соответствующего изменения внутрилегочного давления.

Растяжимость может быть измерена отдельно для легких и для грудной клетки. С клинической точки зрения (особенно во время ИВЛ) наибольший интерес представляет именно податливость самой легочной ткани, отражающая степень рестриктивной легочной патологии. В современной литературе растяжимость легких принято обозначать термином «комплайнс» (от английского слова «compliance», сокращенно — С).


Податливость легких снижается:

С возрастом (у пациентов старше 50 лет);

В положении лежа (из-за давления органов брюшной полости на диафрагму);

Во время лапароскопических хирургических вмешательств в связи с карбоксиперитонеумом;

При острой рестриктивной патологии (острые полисегментарные пневмонии, РДС, отёк легких, ателектазирование, аспирация и т. д.);

При хронической рестриктивной патологии (хроническая пневмония, фиброз легких, коллагенозы, силикозы и т. д.);

При патологии органов, которые окружают легкие (пневмо- или гидроторакс, высокое стояние купола диафрагмы при парезе кишечника и т.д.).


Чем хуже податливость лёгких, тем большее эластическое сопротивление легочной ткани надо преодолеть, чтобы достигнуть того дыхательного объема, что и при нормальной податливости. Следовательно, в случае ухудшающейся растяжимости лёгких при достижении того же дыхательного объема давление в дыхательных путях существенно возрастает.

Данное положение очень важно для понимания: при объемной ИВЛ, когда принудительный дыхательный объём подается больному с плохой податливостью легких (без высокого сопротивления дыхательных путей), существенный рост пикового давления в дыхательных путях и внутрилегочного давления значительно увеличивает риск баротравмы.


Сопротивление дыхательных путей


Поток дыхательной смеси в легких должен преодолеть не только эластическое сопротивление самой ткани, но и резистивное сопротивление дыхательных путей Raw (аббревиатура от английского слова «resistance»). Поскольку трахеобронхиальное дерево представляет собой систему трубок различной длины и ширины, то сопротивление газотоку в легких можно определить по известным физическим законам. В целом, сопротивление потоку зависит от градиента давлений в начале и в конце трубки, а также от величины самого потока.


Поток газа в легких может быть ламинарным, турбулентным и переходным. Для ламинарного потока характерно послойное поступательное движение газа с

Различной скоростью: скорость потока наиболее высока в центре и постепенно снижается к стенкам. Ламинарный поток газа преобладает при относительно низких скоростях и описывается законом Пуазейля, в соответствии с которым сопротивление газотоку в наибольшей степени зависит от радиуса трубки (бронхов). Уменьшение радиуса в 2 раза приводит к возрастанию сопротивления в 16 раз. В связи с этим понятна важность выбора по возможности наиболее широкой эндотрахеальной (трахеостомической) трубки и поддержания проходимости трахеобронхиального дерева во время ИВЛ.
Сопротивление дыхательных путей газотоку значительно увеличивается при бронхиолоспазме, отеке слизистой оболочки бронхов, скоплении слизи и воспалительного секрета по причине сужения просвета бронхиального дерева. На сопротивление влияют также скорость потока и длина трубки (бронхов). С

Увеличением скорости потока (форсирование вдоха или выдоха) сопротивление дыхательных путей увеличивается.

Основные причины увеличения сопротивления дыхательных путей:

Бронхиолоспазм;

Отек слизистой оболочки бронхов, (обострение бронхиальной астмы, бронхит, подсвязочный ларингит);

Инородное тело, аспирация, новообразования;

Скопление мокроты и воспалительного секрета;

Эмфизема (динамическая компрессия воздухоносных путей).


Турбулентный поток характеризуется хаотичным движением молекул газа вдоль трубки (бронхов). Он преобладает при высоких объемных скоростях потока. В случае турбулентного потока сопротивление дыхательных путей возрастает, так как при этом оно в еще большей степени зависит от скорости потока и радиуса бронхов. Турбулентное движение возникает при высоких потоках, резких изменениях скорости потока, в местах изгибов и разветвлений бронхов, при резком изменении диаметра бронхов. Вот почему турбулентный поток характерен для больных ХОЗЛ, когда даже в стадии ремиссии имеет место повышенное сопротивление дыхательных путей. Это же касается больных бронхиальной астмой.


Сопротивление воздухоносных путей распределено в легких неравномерно. Наибольшее сопротивление создают бронхи среднего калибра (до 5-7-й генерации), так как сопротивление крупных бронхов невелико из-за их большого диаметра, а мелких бронхов — вследствие значительной суммарной площади поперечного сечения.


Сопротивление дыхательных путей зависит также от объема легких. При большом объёме паренхима оказывает большее «растягивающее» действие на дыхательные пути, и их сопротивление уменьшается. Применение ПДКВ (PEEP) способствует увеличению объема легких и, следовательно, снижению сопротивления дыхательных путей.

Сопротивление дыхательных путей в норме составляет:

У взрослых — 3-10 мм вод.ст./л/с;

У детей — 15-20 мм вод.ст./л/с;

У младенцев до 1 года — 20-30 мм вод.ст./л/с;

У новорожденных — 30-50 мм вод.ст./л/с.


На выдохе сопротивление дыхательных путей на 2-4 мм вод.ст./л/с больше, чем на вдохе. Это связано с пассивным характером выдоха, когда состояние стенки воздухоносных путей в большей мере влияет на газоток, чем при активном вдохе. Поэтому для полноценного выдоха требуется в 2-3 раза больше времени, чем для вдоха. В норме соотношение времени вдох/выдох (I:E) составляет для взрослых около 1: 1,5-2. Полноценность выдоха у больного во время ИВЛ можно оценить при помощи мониторинга экспираторной временной константы.


Работа дыхания


Работа дыхания совершается преимущественно инспираторными мышцами во время вдоха; выдох почти всегда пассивен. В то же время в случае, например, острого бронхоспазма или отека слизистой оболочки дыхательных путей выдох также становится активным, что значительно увеличивает общую работу внешней вентиляции.


Во время вдоха работа дыхания, в основном, тратится на преодоление эластического сопротивления легочной ткани и резистивного сопротивления дыхательных путей, при этом около 50 % затраченной энергии накапливается в упругих структурах легких. Во время выдоха эта накопленная потенциальная энергия высвобождается, что позволяет преодолевать экспираторное сопротивление дыхательных путей.

Увеличение сопротивления вдоху или выдоху компенсируется дополнительной работой дыхательных мышц. Работа дыхания возрастает при снижении растяжимости легких (рестриктивная патология), росте сопротивления дыхательных путей (обструктивная патология), тахипноэ (за счет вентиляции мертвого пространства).


На работу дыхательной мускулатуры в норме тратится только 2-3% от всего потребляемого организмом кислорода. Это, так называемая, «стоимость дыхания». При физической работе стоимость дыхания может достигать 10-15%. А при патологии (особенно рестриктивной) на работу дыхательных мышц может расходоваться более 30-40% от всего поглощаемого организмом кислорода. При тяжёлой диффузионной дыхательной недостаточности стоимость дыхания возрастает до 90%. С какого-то момента весь дополнительный кислород, получаемый за счет увеличения вентиляции, идет на покрытие соответствующего прироста работы дыхательных мышц. Вот почему на определенном этапе существенное увеличение работы дыхания является прямым показанием к началу ИВЛ, при которой стоимость дыхания уменьшается практически до 0.


Работа дыхания, которая требуется для преодоления эластического сопротивления (податливости легких), возрастает по мере увеличения дыхательного объема. Работа, необходимая для преодоления резистивного сопротивления дыхательных путей, возрастает при увеличении частоты дыхания. Пациент стремится уменьшить работу дыхания, меняя частоту дыхания и дыхательный объем в зависимости от преобладающей патологии. Для каждой ситуации существуют оптимальные частота дыхания и дыхательный объем, при которых работа дыхания минимальна. Так, для больных со сниженной растяжимостью, с точки зрения минимизации работы дыхания, подходит более частое и поверхностное дыхание (малоподатливые легкие трудно поддаются расправлению). С другой стороны, при увеличенном сопротивлении дыхательных путей оптимально глубокое и медленное дыхание. Это понятно: увеличение дыхательного объема позволяет «растянуть», расширить бронхи, уменьшить их сопротивление газотоку; с этой же целью больные с обструктивной патологией во время выдоха сжимают губы, создавая собственное «ПДКВ» (PEEP). Медленное и редкое дыхание способствует удлинению выдоха, что важно для более полного удаления выдыхаемой газовой смеси в условиях повышенного экспираторного сопротивления дыхательных путей.


Регуляция дыхания

Процесс дыхания регулируется центральной и периферической нервной системой. В ретикулярной формации головного мозга находится дыхательный центр, состоящий из центров вдоха, выдоха и пневмотаксиса.


Центральные хеморецепторы расположены в продолговатом мозге и возбуждаются при повышении концентрации Н+ и РСО 2 в спинномозговой жидкости. В норме рН последней составляет 7,32, РСО 2 - 50 мм.рт.ст., а содержание НСО 3 - 24,5 ммоль/л. Даже небольшое снижение рН и рост РСО 2 увеличивают вентиляцию легких. Эти рецепторы реагируют на гиперкапнию и ацидоз медленнее, чем периферические, так как требуется дополнительное время на измерение величины СО 2 , Н + и НСО 3 из-за преодоления гематоэнцефалического барьера. Сокращения дыхательных мышц контролирует центральный дыхательный механизм, состоящий из группы клеток продолговатого мозга, моста, а также пневмотаксических центров. Они тонизируют дыхательный центр и по импульсации из механорецепторов определяют порог возбуждения, при котором прекращается вдох. Пневмотаксические клетки также переключают вдох на выдох.


Периферические хеморецепторы, расположенные на внутренних оболочках сонного синуса, дуги аорты, левого предсердия, контролируют гуморальные параметры (РО 2 , РСО 2 в артериальной крови и спинномозговой жидкости) и немедленно реагируют на изменения внутренней среды организма, меняя режим самостоятельного дыхания и, таким образом, корригируя рН, РО 2 и РСО 2 в артериальной крови и спинномозговой жидкости. Импульсы из хеморецепторов регулируют объем вентиляции, необходимый для поддержания определенного уровня метаболизма. В оптимизации режима вентиляции, т.е. установлении частоты и глубины дыхания, длительности вдоха и выдоха, силы сокращения дыхательных мышц при данном уровне вентиляции, участвуют и механорецепторы. Вентиляция легких определяется уровнем метаболизма, воздействием продуктов обмена веществ и О2 на хеморецепторы, которые трансформируют их в афферентную импульсацию нервных структур центрального дыхательного механизма. Основная функция артериальных хеморецепторов - немедленная коррекция дыхания в ответ на изменения газового состава крови.


Периферические механорецепторы, локализующиеся в стенках альвеол, межреберных мышцах и диафрагме, реагируют на растяжение структур, в которых они находятся, на информацию о механических явлениях. Главную роль играют механорецепторы легких. Вдыхаемый воздух поступает по ВП к альвеолам и участвует в газообмене на уровне альвеолярно-капиллярной мембраны. По мере растяжения стенок альвеол во время вдоха механорецепторы возбуждаются и посылают афферентный сигнал в дыхательный центр, который тормозит вдох (рефлекс Геринга-Брейера).


При обычном дыхании межреберно-диафрагмальные механорецепторы не возбуждаются и имеют вспомогательное значение.

Система регуляции завершается нейронами, интегрирующими импульсы, которые поступают к ним от хеморецепторов, и посылающими импульсы возбуждения к дыхательным мотонейронам. Клетки бульбарного дыхательного центра посылают как возбуждающие, так и тормозящие импульсы к дыхательным мышцам. Координированное возбуждение респираторных мотонейронов приводит к синхронному сокращению дыхательных мышц.

Дыхательные движения, создающие воздушный поток, происходят благодаря согласованной работе всех дыхательных мышц. Нервные клетки двигательных

Нейронов дыхательных мышц расположены в передних рогах серого вещества спинного мозга (шейные и грудные сегменты).


У человека в регуляции дыхания принимает участие и кора большого мозга в пределах, допускаемых хеморецепторной регуляцией дыхания. Так, например, волевая задержка дыхания ограничена временем, в течение которого РаО 2 в спинномозговой жидкости повышается до уровней, возбуждающих артериальные и медуллярные рецепторы.


Биомеханика дыхания


Вентиляция легких происходит за счет периодических изменений работыдыхательных мышц, объема грудной полости и легких. Основными мышцами вдоха являются диафрагма и наружные межреберные мышцы. Во время их сокращения происходят уплощение купола диафрагмы и приподнятие ребер кверху, в результате объем грудной клетки увеличивается, растет отрицательное внутриплевральное давление (Ppl). Перед началом вдоха (в конце выдоха) Ppl приблизительно составляет минус 3-5 см вод.ст. Альвеолярное давление (Palv) принимается за 0 (т. е. равно атмосферному), оно же отражает давление в дыхательных путях и коррелирует с внутригрудным давлением.


Градиент между альвеолярным и внутриплевральным давлением называется транспульмонарным давлением (Ptp). В конце выдоха оно составляет 3-5 см вод.ст. Во время спонтанного вдоха рост отрицательного Ppl (до минус 6-10 см вод.ст.) вызывает снижение давления в альвеолах и дыхательных путях ниже атмосферного. В альвеолах давление снижается до минус 3-5 см вод.ст. За счёт разницы давлений воздух поступает (засасывается) из внешней среды в легкие. Грудная клетка и диафрагма действуют как поршневой насос, втягивающий воздух в легкие. Такое «присасывающее» действие грудной клетки важно не только для вентиляции, но и для кровообращения. Во время спонтанного вдоха происходят дополнительное «присасывание» крови к сердцу (поддержание преднагрузки) и активизация легочного кровотока из правого желудочка по системе легочной артерии. В конце вдоха, когда движение газа прекращается, альвеолярное давление возвращается к нулю, но внутриплевральное давление остается сниженным до минус 6-10 см вод.ст.

Выдох в норме является процессом пассивным. После расслабления дыхательных мышц силы эластической тяги грудной клетки и легких вызывают удаление (выдавливание) газа из легких и восстановление первоначального объема легких. В случае нарушения проходимости трахеобронхиального дерева (воспалительный секрет, отек слизистой оболочки, бронхоспазм) процесс выдоха затруднен, и в акте дыхания начинают принимать участие также мышцы выдоха (внутренние межреберные мышцы, грудные мышцы, мышцы брюшного пресса и т. д.). При истощении экспираторных мышц процесс выдоха еще более затрудняется, происходит задержка выдыхаемой смеси и динамическое перераздувание легких.


Недыхательные функции легких

Функции легких не ограничиваются диффузией газов. В них содержится 50% всех эндотелиальных клеток организма, которые выстилают капиллярную поверхность мембраны и участвуют в метаболизме и инактивации биологически активных веществ, проходящих через легкие.


1. Легкие контролируют общую гемодинамику путем различного заполнения собственного сосудистого русла и влияния на биологически активные вещества, регулирующие сосудистый тонус (серотонин, гистамин, брадикинин, катехоламины), превращением ангиотензина I в ангиотензин II, участием в метаболизме простагландинов.


2. Легкие регулируют свертывание крови, секретируя простациклин - ингибитор агрегации тромбоцитов, и удаляя из кровотока тромбопластин, фибрин и продукты его деградации. В результате этого оттекающая от легких кровь имеет более высокую фибринолитическую активность.


3. Легкие участвуют в белковом, углеводном и жировом обмене, синтезируя фосфолипиды (фосфатидилхолин и фосфатидилглицерол - основные компоненты сурфактанта).

4. Легкие продуцируют и элиминируют тепло, поддерживая энергетический баланс организма.


5. Легкие очищают кровь от механических примесей. Агрегаты клеток, микротромбы, бактерии, пузырьки воздуха, капли жира задерживаются легкими и подвергаются деструкции и метаболизму.


Типы вентиляции и виды нарушений вентиляции


Разработана физиологически четкая классификация типов вентиляции, в основу которой положены парциальные давления газов в альвеолах. В соответствии с этой классификацией выделяются следующие типы вентиляции:


1.Нормовентиляция - нормальная вентиляция, при которой парциальное давление СО2 в альвеолах поддерживается на уровне около 40 мм.рт.ст.


2.Гипервентиляция - усиленная вентиляция, превышающаяметаболические потребности организма (РаСО2<40 мм.рт.ст.).


3.Гиповентиляция - сниженная вентиляция по сравнению с метаболическими потребностями организма (РаСО2>40 мм.рт.ст.).


4. Повышенная вентиляция - любое увеличение альвеолярной вентиляции по сравнению с уровнем покоя, независимо от парциального давления газов в альвеолах (например, при мышечной работе).

5.Эупноэ - нормальная вентиляция в покое, сопровождающаяся субъективным чувством комфорта.


6.Гиперпноэ - увеличение глубины дыхания независимо от того, повышена ли при этом частота дыхательных движений или нет.


7.Тахипноэ - увеличение частоты дыхания.


8.Брадипноэ - снижение частоты дыхания.


9.Апноэ - остановка дыхания, обусловленная, главным образом, отсутствием физиологической стимуляции дыхательного центра (уменьшение напряжения СО2, в артериальной крови).


10.Диспноэ (одышка) - неприятное субъективное ощущение недостаточности дыхания или затрудненного дыхания.


11.Ортопноэ - выраженная одышка, связанная с застоем крови в легочных капиллярах в результате недостаточности левого сердца. В горизонтальном положении это состояние усугубляется, и поэтому лежать таким больным тяжело.


12.Асфиксия - остановка или угнетение дыхания, связанные, главным образом, с параличом дыхательных центров или закрытием дыхательных путей. Газообмен при этом резко нарушен (наблюдается гипоксия и гиперкапния).

В целях диагностики целесообразно различать два типа нарушений вентиляции - рестриктивный и обструктивный.


К рестриктивному типу нарушений вентиляции относятся все патологические состояния, при которых снижаются дыхательная экскурсия и способность легких расправляться, т.е. уменьшается их растяжимость. Такие нарушения наблюдаются, например, при поражениях легочной паренхимы (пневмонии, отёк лёгких, фиброз лёгких) или при плевральных спайках.


Обструктивный тип нарушений вентиляции обусловлен сужением воздухоносных путей, т.е. повышением их аэродинамического сопротивления. Подобные состояния встречаются, например, при накоплении в дыхательных путях слизи, набухании их слизистой оболочки или спазме бронхиальных мышц (аллергический бронхиолоспазм, бронхиальная астма, астмоидный бронхит и т.д.). У таких больных сопротивление вдоху и выдоху повышено, и поэтому со временем воздушность легких и ФОЕ у них увеличиваются. Патологическое состояние, характеризующееся чрезмерным уменьшением числа эластических волокон(исчезновением альвеолярных перегородок, объединением капиллярной сети), называется эмфиземой легких.