Нервные пути и связи в слуховой системе. Слуховые проводящие пути и низшие слуховые центры

Вестибулярный проводящий путь

Восходящая часть состоит из аксонов клеток вестибулярных ядер, расположенных в латеральном углу ромбовидной ямки – это вторые нейроны. В преддверных узлах лежат первые нейроны, центральные отростки которых формируют часть VIII пары.

Главный путь - вестибуломозжечковый - волокна его проходят по нижней мозжечковой ножке в кору червя (узелок). Задний продольный пучок направляется к подкорковым центрам зрения, имеет ответвление в мозжечок для координации со зрительным анализатором. Третьи нейроны - грушевидные нейроны мозжечковой коры заканчиваются отростками в зубчатом ядре и ядре шатра, где находятся четвертые нейроны.

Нисходящая часть пути состоит из нейронов ядер шатра и зубчатого, от которых начинаются волокна мозжечково-преддверного пути, проходящие в составе мозжечково-ядерного пути по нижней мозжечковой ножке в латеральное вестибулярное ядро. Из латерального вестибулярного ядра импульс переключается на преддверно-спинномозговой путь в боковых канатиках спинного мозга и на задний продольный пучок.

Из зубчатого ядра начинаются также денто-рубральный и денто-таламический пути. Оба они устанавливают связи с экстрапирамидной системой.

Вестибулярные импульсы в кору большого мозга приходят через мозжечок по денто-таламическому и таламо-кортикальному путям, попадая в верхнюю и среднюю височные извилины, в нижнюю часть постцентральной извилины.

Воспринимающий аппарат слухового анализатора - волосковые клетки на базилярной мембране в спиральном органе. От них импульс получают терминальные окончания биполярных нейронов, лежащих в спиральном узле улитки.

Центральные отростки биполярных клеток спирального узла формируют улитковую часть нерва, которая вместе с преддверной выходит через внутренний слуховой проход в заднюю черепную яму и вступает в борозду между мостом и продолговатым мозгом, направляясь к нейронам улитковых ядер заднего мозга. Переднее и заднее слуховые (улитковые) ядра находятся в вестибулярном поле ромбовидной ямки, что занимает латеральный угол.

Отростки клеток переднего ядра переходят на противоположную сторону, образуя трапециевидное тело моста. Отростки клеток заднего ядра формируют мозговые полоски IV желудочка, которые по срединной борозде ромбовидной ямки погружаются в глубину мозга и присоединяются к волокнам трапециевидного тела.

В мосту волокна переднего ядра изгибаются в латеральную сторону (начало латеральной петли) и идут в ее составе вместе с волокнами заднего слухового ядра к подкорковым центрам. Медиальное коленчатое тело и нижние холмики - подкорковые центры слуха - принимают аксоны улитковых ядер. Слуховой путь проходит через заднюю ножку внутренней капсулы. Конечный пункт восходящего слухового пути - верхняя височная извилина с ее короткими поперечными бороздами и извилинами.

В нижних холмиках среднего мозга происходит переключение слухового пути на нисходящий экстрапирамидный путь - тектоспинальный тракт.

Проводящий путь слухового анализатора осуществляет связь кортиева органа с вышележащими отделами ЦНС. Первый нейрон находится в спиральном узле, расположенном в основании полого улиткового узла проходят по каналам костной спиральной пластинки к спиральному органу и оканчиваются у наружных волосковых клеток. Аксоны спирального узла составляют слуховой нерв, вступающий в области мостомозжечкового угла в ствол мозга, где и заканчиваются синапсами с клетками дорсального и вентрального ядер.

Аксоны вторых нейронов от клеток дорсального ядра образуют мозговые полоски находящиеся в ромбовидной ямке на границе моста и продолговатого мозга. Большая часть мозговой полоски переходит на противоположную сторону и около средней линии переходит погружается в вещество мозга, подключаясь к латеральной петле своей стороны. Аксоны вторых нейронов от клеток вентрального ядра участвуют в образовании трапециевидного тела. Большая часть аксонов переходит на противоположную сторону, переключаясь в верхней оливе и ядрах трапециевидного тела. Меньшая часть волокон оканчивается на своей стороне.

Аксоны ядер верхней оливы и трапециевидного тела (III нейрон) участвуют в образовании латеральной петли, имеющей волокна II и III нейронов. Часть волокон II нейрона прерываются в ядре латеральной петли или переключаются на III нейрон в медиальном коленчатом теле. Эти волокна III нейрона латеральной петли, пройдя мимо медиального коленчатого тела, заканчиваются в нижнем двухолмии среднего мозга, где формируется tr.tectospinalis. Те волокна латеральной петли относящиеся к нейронам верхней оливы, из моста проникают в верхние ножки мозжечка и затем достигают его ядер, а другая часть аксонов верхней оливы направляется к мотонейронам спинного мозга. Аксоны III нейрона, расположенные в медиальном коленчатом теле, формируют слуховое сияние, заканчивающееся в поперечной извилине Гешля височной доли.

Центральное представительство слухового анализатора.

У человека корковым слуховым центром является поперечная извилина Гешля, включая в себя в соответствии с цитоархитектоническим делением Бродмана поля 22, 41, 42, 44, 52 коры больших полушарий.

В заключении следует сказать, что как и в других корковых представительствах иных анализаторов в слуховой системе существует взаимосвязь между зонами слуховой области коры. Так каждая из зон слуховой области коры связана с другими зонами, организованными тонотопически. Кроме того, имеется гомотопическая организация связей между аналогичными зонами слуховой коры двух полушарий (существуют как внутрикорковые, так и межполушарные связи). При этом основная часть связей (94%) гомотопически оканчиваются на клетках III и IV слоёв и лишь незначительная часть – в V и VI слоях.

94. Вестибулярный периферический анализатор. В преддверии лабиринта имеются два перепончатых мешочка с находящимся в них отолитовым аппаратом. На внутренней поверхности мешочков имеются возвышения (пятна), выстланные нейроэпителием, состоящим из опорных и волосковых клеток. Волоски чувствительных клеток образуют сеть, которая покрыта желеобразной субстанцией, содержащей микроскопические кристаллики – отолиты. При прямолинейных движениях тела происходит смещение отолитов и механическое давление, что вызывает раздражение нейроэпителиальных клеток. Импульс передается преддверному узлу, а затем по вестибулярному нерву (VIII пара) в продолговатый мозг.

На внутренней поверхности ампул перепончатых протоков имеется выступ – ампулярный гребешок, состоящий из чувствительных клеток нейроэпителия и опорных клеток. Чувствительные волоски, склеивающиеся между собой, представлены в виде кисточки (купуля). Раздражение нейроэпителия происходит в результате перемещения эндолимфы при смещении тела под углом (угловые ускорения). Импульс передается волокнами вестибулярной ветви преддверно-улиткового нерва, которая заканчивается в ядрах продолговатого мозга. Эта вестибулярная зона связана с мозжечком, спинным мозгом, ядрами глазодвигательных центров, корой головного мозга.

В соответствии с ассоциативными связями вестибулярного анализатора различают вестибулярные реакции:вестибулосенсорные, вестибуловегетативные, вестибулосоматические(анимальные), вестибуломозжечковые, вестибулоспинальные, вестибулоглазодвигательные.

95. Проводящий путь вестибулярного (статокинетического) анализатора обеспечивает проведение нервных импульсов от волосковых сенсорных клеток ампулярных гребешков (ампулы полукружных протоков) и пятен (эллиптического и сферического мешочков) в корковые центры полушарий большого мозга.

Тела первых нейронов статокинетического анализатора лежат в преддверном узле, находящемся на дне внутреннего слухового прохода. Периферические отростки псевдоуниполярных клеток преддверного узла заканчиваются на волосковых сенсорных клетках ампулярных гребешков и пятен.

Центральные отростки псевдоуниполярных клеток в виде преддверной части преддверно-улиткового нерва вместе с улитковой частью через внутреннее слуховое отверстие вступают в полость черепа, а затем в мозг к вестибулярным ядрам лежащим в области вестибулярного поля, area vesribularis ромбовидной ямки

Восходящая часть волокон заканчивается на клетках верхнего вестибулярного ядра (Бехтерева*) Волокна составляющие нисходящую часть, заканчиваются в медиальном (Швальбе**), латеральном (Дейтерса***) и нижнем Роллера****) вестибулярных ядpax

Аксоны клеток вестибулярных ядер (II нейроны) образуют ряд пучков, которые идут к мозжечку, к ядрам нервов глазных мышц ядрам вегетативных центров, коре головного мозга, к спинному мозгу

Часть аксонов клеток латерального и верхнего вестибулярного ядра в виде преддверно-спинномозгового пути направляется в спинной моя располагаясь по периферии на границе переднего и боковою канатиков и заканчивается посегментно на двигательных анимальных клетках передних рогов, осуществляя проведение вестибулярных импульсов на мышцы шеи туловища и конечностей, обеспечивая поддержание равновесия тела

Часть аксонов нейронов латерального вестибулярного ядpa направляется в медиальный продольный пучок своей и противоположной стороны, обеспечивая связь органа равновесия через латеральное ядро с ядрами черепных нервов (III, IV, VI нар), иннервирующих мышцы глазного яблока что позволяет сохранить направление взгляда, несмотря на изменения положения головы. Поддержание равновесия тела в значительной степени зависит от согласованных движений глазных яблок и головы

Аксоны клеток вестибулярных ядер образуют связи с нейронами ретикулярной формации мозгового ствола и с ядрами покрышки среднего мозга

Появление вегетативных реакций (урежение пульса, падение артериального давления, тошнота, рвота, побледнение лица, усиление перистальтики желудочно-кишечного тракта и т.д.) в ответ на чрезмерное раздражение вестибулярного аппарата можно объяснить наличием связей вестибулярных ядер через ретикулярную формацию с ядрами блуждающего и языкоглоточного нервов

Сознательное определение положения головы достигается наличием связей вестибулярных ядер с корой полушарий большою мозга При этом аксоны клеток вестибулярных ядер переходят на противоположную сторону и направляются в составе медиальной петли к латеральному ядру таламуса, где переключаются на III нейроны

Аксоны III нейронов проходят через заднюю часть задней ножки внутренней капсулы и достигают коркового ядра стато-кинетического анализатора, которое рассеяно в коре верхней височной и постцентральной извилин, а также в верхней теменной дольке полушарий большого мозга

96. Инородные тела в наружном слуховом проходе чаще всего встречаются у детей, когда во время игры они заталкивают себе в ухо различные мелкие предметы (пуговицы, шарики, камушки, горошины, фасоль, бумагу и т.д.). Однако и у взрослых нередко обнаруживают инородные тела в наружном слуховом проходе. Ими могут быть обломки спичек, кусочки ваты, застревающие в слуховом проходе в момент очистки уха от серы, воды, насекомые и т.д.

Клиническая картина зависит от величины и характера инородных тел наружного уха. Так, инородные тела с гладкой поверхностью обычно не травмируют кожу наружного слухового прохода и длительное время могут не вызывать неприятных ощущений. Все другие предметы довольно часто приводят к реактивному воспалению кожи наружного слухового прохода с образованием раневой или язвенной поверхности. Набухшие от влаги, покрытые ушной серой инородные тела (вата, горошина, фасоль и т.д.) могут привести к закупорке слухового прохода. Следует иметь в виду, что одним из симптомов инородного тела уха является снижение слуха по типу нарушения звукопроведения. Оно возникает в результате полной закупорки слухового прохода. Ряд инородных тел (горох, семечки) способны в условиях влажности и тепла набухать, поэтому их удаляют после вливания веществ, способствующих их сморщиванию. Насекомые, попавшие в ухо, в момент движений вызывают неприятные, иногда мучительные ощущения.

Диагностика. Распознавание инородных тел обычно не представляет трудностей. Крупные инородные тела задерживаются в хрящевой части слухового прохода, а мелкие могут проникать в глубь костного отдела. Они хорошо видны при отоскопии. Таким образом, диагноз инородного тела наружного слухового прохода должен и может быть поставлен при отоскопии.В тех случаях, когда при неудачных или неумелых попытках удаления инородного тела, предпринятых ранее, возникло воспаление с инфильтрацией стенок наружного слухового прохода, диагностика становится затрудненной. В таких случаях при подозрении на инородное тело показан кратковременный наркоз, во время которого возможны как отоскопия, так и удаление инородного тела. Для обнаружения металлических инородных тел прибегают к рентгенографии.

Лечение. После определения величины, формы и характера инородного тела, наличия или отсутствия какого-либо осложнения выбирают метод его удаления. Наиболее безопасным методом удаления неосложненных инородных тел является вымывание их теплой водой из шприца типа Жане емкостью 100- 150 мл, которое производят так же, как и удаление серной пробки. При попытке удаления пинцетом или щипцами инородное тело может выскользнуть и проникнуть из хрящевого отдела в костный отдел слухового прохода, а иногда даже через барабанную перепонку в среднее ухо. В этих случаях извлечение инородного тела становится более трудным и требует соблюдения большой осторожности и хорошей фиксации головы больного, необходим кратковременный наркоз. Крючок зонда обязательно под контролем зрения проводят за инородное тело и вытягивают его. Осложнением инструментального удаления инородного тела могут быть разрыв барабанной перепонки, вывихивание слуховых косточек и т.д. Набухшие инородные тела (горох, бобы, фасоль и т.д.) должны быть предварительно обезвожены вливанием 70 % спирта в слуховой проход в течение 2-3 дней, в результате чего они сморщиваются и удаляются без особого труда промыванием. Насекомых при попадании в ухо умерщвляют вливанием в слуховой проход нескольких капель чистого спирта или подогретого жидкого масла, а затем удаляют промыванием. В тех случаях, когда инородное тело вклинилось в костном отделе и повлекло за собой резкое воспаление тканей слухового прохода или привело к травме барабанной перепонки, прибегают к оперативному вмешательству под наркозом. Производят разрез мягких тканей позади ушной раковины, обнажают и разрезают заднюю стенку кожного слухового прохода и удаляют инородное тело. Иногда следует хирургическим путем расширить просвет костного отдела за счет удаления части задней его стенки.

Первый нейрон про­водящих путей слухового анализатора - упомянутые выше бипо­лярные клетки. Их аксоны образуют улитковый нерв, волокна ко­торого входят в продолговатый мозг и оканчиваются в ядрах, где расположены клетки второго нейрона проводящих путей. Аксоны клеток второго нейрона доходят до внутреннего коленчатого тела,

Рис. 5. Схема проводящих путей слухового анализатора:

1 - рецепторы кортиева органа; 2 - тела биполярных нейронов; 3 - улитковый нерв; 4 - ядра продолговатого мозга, где " расположены тела второго нейрона проводящих путей; 5 - внутреннее коленчатое тело, где начинается третий нейрон основных проводящих путей; 6 - верхняя поверхность височной доли коры больших полушарий (ниж­няя стенка поперечной щели), где оканчивается третий нейрон; 7 - нервные волокна, связывающие оба внутренних коленчатых тела; 8 - задние бугры четверохолмия; 9 - начало эфферентных путей, идущих от четверохолмия.

главным образом противоположной стороны. Здесь начинается третий нейрон, по которому импульсы достигают слуховой области коры больших полушарий (рис. 5).

Помимо основного, проводящего пути, связывающего перифери­ческий отдел слухового анализатора с его центральным, корковым отделом, существуют и другие пути, через которые могут осуще­ствляться рефлекторные реакции на раздражение органа слуха у животного и после удаления больших полушарий. Особое значение имеют ориентировочные реакции на звук. Они осуществляются при участии четверохолмия, к задним и отчасти передним буграм ко­торого идут коллатерали волокон, направляющихся к внутреннему коленчатому телу.

Корковый отдел слухового анализатора.

У человека ядро кор­кового отдела слухового анализатора расположено ^в височной, области коры больших, полушарий. В той части поверхности височ­ной" области, которая представляет собой нижнюю стенку попереч­ной, или сильвиевой, щели, расположено поле 41. К нему, а возмож­но и к соседнему полк» 42, направляется основная масса волокон от внутреннего коленчатого тела. Наблюдения показали, что при дву­стороннем разрушении указанных полей наступает полная глухота. Однако в тех случаях, когда поражение ограничивается одним полу­шарием, может наступить небольшое и нередко лишь временное понижение слуха. Это объясняется тем, что проводящие пути слу­хового анализатора неполностью перекрещиваются. К тому же оба внутренних коленчатых тела связаны между собой промежуточными нейронами, через которые импульсы могут переходить с правой стороны на левую и обратно. В результате корковые клетки каждого полушария получают импульсы с обоих кортиевых органов.

От коркового отдела слухового анализатора идут эфферентные пути к нижележащим отделам мозга, и прежде всего к внутреннему коленчатому телу и к задним буграм четверохолмия. Через них осу­ществляются корковые двигательные рефлексы на звуковые раздра­жители. Путем раздражения слуховой области коры можно вызвать у животного ориентировочную реакцию настораживания (движения ушной раковины, поворот головы и т. п.). Анализ и синтез звуковых раздражении. Анализ звуковых раздражений начинается в периферическом отделе слухового анализа­тора, что обеспечивается особенностями строения улитки, и прежде всего основной пластинки, каждый участок которой колеблется в ответ на звуки только определенной высоты.

Высший анализ и синтез звуковых раздражении, основанный на образовании положительных и отрицательных условных связей, происходит в корковом отделе анализатора. Каждый звук, воспри­нимаемый кортиевым органом, приводит в состояние возбуждения определенные клеточные группы поля 41 и соседних с ним полей. Отсюда возбуждение распространяется в другие пункты коры больших полушарий, особенно в поля 22 и 37. Между различными кле­точными группами, которые повторно приходил.i в состояние возбуждения пэд влиянием опргделеннэго звукового раздражения или комплекса последовательных звуковых раздражении, устанав­ливаются все более прочные условные связи. Они устанавливаются также между очагами возбуждения в слуховом анализаторе и теми очагами, которые одновременно возникают под влиянием раздражи­телей, действуюдих на другие анализаторы. Так образуются все новые и новыэ условные связи, обогащзюд ie анализ и синтез звуко­вых раздражении.

В основе анализа и синтеза звуковых речевых раздражении ле­жит установление условных связей между очагами возбуждения. которые возникают под влиянием непосредственных раздражителей, действуюдих на различные анализаторы, и теми очагами, которые вызываются звуковыми речевыми сигналами, обэзначаюдими эти раздражители. Так называемый слуховой центр речи, т. е. тот учас­ток слухового анализатора, функция которого связана с речевым анализом и синтезом звуковых раздражении, иными словами, с пониманием слышимой речи, расположен в основном в левом полу­шарии и занимает задний конец поля и прилегающий участок поля.

Факторы, определяющие чувствительность слухового анализатора.

Ухо человека особенно чувствительно к частоте звуковых и - колебаний от 1030 до 40ЭЭ в секунду. Чувствительность к более высоким и более низким звукам значительно падает, особенно с приближением к нижнему и верхнему пределам воспринимаемых частот. Так, для звуков, частота колебаний которых приближается к 20 или к 20 000 в секунду, порог повышается в 10 ООЭ раз, если определять силу звука по производимому им давлению. С возрастом чувствительность слухового анализатора, как правило, значительно понижается, но главным образом к звукам большой частоты, к низ­ким же (до 1000 колебаний в секунду) остается почти неизмен­ной вплоть до старческого возраста.

В условиях полной тишины чувствительность слуха повышается. Если же начинает звучать тон определенной высоты и неизменной интенсивности, то вследствие адаптации к нему ощущение гром­кости снижается сначала быстро, а потом все более медленно. Од­новременно, хотя и в меньшей степени, понижается чувствитель­ность к звукам, более или менее близким по частоте колебаний к звучащему тону. Однако обычно адаптация не распространяется на весь диапазон воспринимаемых звуков. По прекращении звуча­ния вследствие адаптации к тишине уже через 10-15 секунд вос­станавливается прежний уровень чувствительности.

Частично адаптация зависит от периферического отдела анали­затора, а именно от изменения как усиливающей функции звуко­проводящего аппарата, так и возбудимости волосковых клеток кортиева органа. Центральный отдел анализатора также принимает участие в явлениях адаптации, о чем свидетельствует хотя бы тот факт, что при действии звука только на одно ухо сдвиги чувствитель­ности наблюдаются в обоих ушах. На чувствительность слухового анализатора, и в частности на процесс адаптации, оказывают влияние изменения корковой возбудимости, которые возникают в резуль­тате как иррадиации, так и взаимной индукции возбуждения и торможения при раздражении рецепторов других анализаторов. Изменяется чувствительность и при одновременном действии двух тонов разной высоты. В последнем случае слабый звук заглушается более сильным главным образом потому, что очаг возбуждения, воз­никающий в коре под влиянием сильного звука, понижает вследствие отрицательной индукции возбудимость других участков коркового отдела того же анализатора.

Оглавление темы "Проводящие пути.":
1. Проводящие пути. Проводящий путь зрительного анализатора. Проводящий путь зрения.
2. Ядра проводящего пути зрительного анализатора. Ядра зрения. Признаки поражения зрительного тракта.
3.
4. Ядра слухового анализатора. Признаки поражения слухового пути.
5. Проводящий путь вестибулярного (статокинетического) анализатора. Ядра вестибулярного анализатора. Признаки поражения проводящего пути вестибулярного анализатора.
6. Проводящий путь анализатора обоняния. Проводящий путь обоняния.
7. Ядра проводящего пути обоняния. Признаки поражения обоняния.
8. Проводящий путь анализатора вкуса. Проводящий путь вкуса (вкусовой чувствительности).
9. Ядра проводящего пути вкуса (вкусовой чувствительности). Признаки поражения вкуса.

Проводящий путь слухового анализатора обеспечивает проведение нервных импульсов от специальных слуховых волосковых клеток спирального (кортиева) органа в корковые центры полушарий большого мозга.

Первые нейроны этою пути представлены псевдоуниполярными нейронами, тела которых находятся в спиральном узле улитки внутреннего уха (спиральный канал). Их периферические отростки (дендриты) заканчиваются на наружных волосковых сенсорных клетках спирального органа.

Спиральный орган, описанный впервые в 1851г. итальянским анатомом и гистологом A Corti представлен несколькими рядами эпителиальных клеток (поддерживающие клетки наружные и внутренние клетки столбов) среди которых помещены внутренние и наружные волосковые сенсорные клетки, составляющие рецепторы слухового анализатора .

* Корт Альфонсо (Сorti Alfonso 1822-1876 ) итальянский анатом. Родился в Камба-рене (Сардиния) Работал прозектором у И.Гиртля, позднее - гистологом в Вюрцбурге, Утрехте и Турине. В 1951 г. впервые описал строение спирального органа улитки. Известен также работами по микроскопической анатомии сетчатки глаза. сравнительной анатомии слухового аппарата.

Тела сенсорных клеток фиксированы на базилярной пластинке . Базилярная пластинка состоит из 24 000 тонких поперечно распоженных коллагеновых волокон (струн) длина которых от основания улитки до ее верхушки плавно нарастает от 100 мкм до 500 мкм при диаметре 1-2 мкм

По последним данным, коллагеновые волокна образуют эластическую сеть, расположенную в гомогенном основном веществе, которая на звуки разной частоты резонирует в целом строго градуированными колебаниями. Колебательные движения с перилимфы барабанной лестницы передаются на базилярную пластинку, вызывая максимальное колебание тех ее отделов, которые "настроены" в резонанс на данную частоту волны Для низких звуков такие участки находятся вершины улитки, а для высоких у ее основания.

Ухо человека воспринимает звуковые волны с частотой колебаний от 161 ц до 20 000 Гц. Для человеческой речи наиболее оптимальные границы от 1000 Гц до 4000 Гц.

При колебаниях определенных участков базилярной пластинки происходит натяжение и сжатие волосков сенсорных клеток, соответствующих данном) участку базилярной пластинки.

Под действием механической энергии в волосковых сенсорных клетках, изменяющих свое положение всего лишь на величину диаметра атома, возникают определенные цитохимические процессы, в результате чего энергия внешнего раздражения трансформируется в нервный импульс. Проведение нервных импульсов от специальных слуховых волосковых клеток спирального (кортиева) органа в корковые центры полушарий большого мозга осуществляется с помощью слухового пути.

Центральные отростки (аксоны ) псевдоуниполярных клеток спирального узла улитки покидают внутреннее ухо через внутренний слуховой проход, собираясь в пучок, представляющий собой улитковый корешок преддверно-улиткового нерва. Улитковый нерв вступает в вещество мозгового ствола в области мостомозжечкового угла, его волокна заканчиваются на клетках переднего (вентрального) и заднего (дорсального) улитковых ядер, где находятся тела II нейронов .

Учебное видео проводящих путей слухового анализатора

Первый нейрон находится в улитковом узле, ganglion cochleare, который расположен в основании стержня улитки. Дендриты его клеток проходят через отверстия в спиральной костной пластинке и заканчиваются в волосковых клетках спи­рального органа. Аксоны клеток спирального узла улитки об­разуют улитковую часть VIII пары черепных нервов и достига­ют переднего и заднего улитковых ядер (второй нейрон). Отростки клеток заднего ядра выходят на поверхность ромбо­видной ямки и образуют слуховые полоски, которые по средней линии погружаются внутрь и присоединяются к волокнам тра­пециевидного тела. В составе латеральной петли противополож­ной и своей сторон они доходят до подкорковых центров слуха. Волокна переднего ядра формируют трапециевидное тело и за­канчиваются в ядрах трапециевидного тела и верхней оливы противоположной стороны (частично своей стороны)-третий нейрон. Отростки клеток этих ядер (третий нейрон) соединяют­ся с отростками клеток заднего ядра (второй нейрон) и обра­зуют латеральную слуховую петлю, которая заканчивается в подкорковых центрах слуха - нижних холмиках и медиальном коленчатом теле. Нижние холмики не имеют связи с корой. От­ростки клеток медиального коленчатого тела в составе внутрен­ней капсулы и слуховой лучистости достигают верхней височной извилины, где находится корковый конец слухового анализато­ра, и тогда возбуждение последнего превращается в ощущение. От ядер нижних холмиков, верхней оливы, трапециевидного те­ла отходят слуховые волокна и их коллатерали к передним ро­гам спинного мозга, двигательным ядрам среднего мозга, моста, продолговатого мозга и к медиальному продольному пучку. Эти пути регулируют рефлекторные движения головы, мышц глазного яблока, туловища, конечностей в ответ на слуховые раздражения.

На функцию слухового анализатора оказывает влияние со­стояние других анализаторов, особенно зрительного и обоня­тельного.

Пороги восприятия звуков колеблются в течение дня и за­висят от степени утомления, фактора внимания, положения головы (например, при запрокидывании головы восприятие зву­ка заметно снижается).

Краткий очерк развития органа слуха и равновесия в фило- и онтогенезе

Беспозвоночные обладают происходящим из эктодермы стати­ческим пузырьком, который определяет положение их тела в про­странстве. У миксин появляется один полукружный канал, кото­рый соединяется с пузырьком. У круглоротых уже два полукруж­ных канала. У всех позвоночных начиная с акуловых рыб имеется по три полукружных канала с каждой стороны головы. Выход животных из водной среды обитания на сушу привел к развитию акустического аппарата. Лишь у млекопитающих развивается спиральная улитка, число ее завитков различно (например, у ки­та - 1,5, у лошади - 2, у собаки - 3, у свиньи - 4, у человека - 2,5). Перилимфатическое пространство разделено на лестницу преддверия и барабанную лестницу. Образуется окно улитки. В то же время орган равновесия, который уже достиг высокого уровня развития у рыб, в дальнейшем мало изменяется. Усложняются центры головного мозга, управляющие положением тела в про­странстве.

У амфибий появляется среднее ухо. Расположенная снаружи барабанная перепонка закрывает барабанную полость. У амфибий появляется колонка, которая соединяет барабанную перепонку с овальным окошком. Особенностью среднего уха млекопитающих является наличие у них слуховых косточек, добавочных воздухо­носных ячеек. У млекопитающих сначала возникает стремя, затем молоточек и наковальня. Зачатки наружного уха появляются у рептилий и птиц. Особенно хорошо развито наружное ухо у млеко­питающих.

Образование перепончатого лабиринта в онтогенезе у человека начинается с утолщения эктодермы на поверхности головного отдела зародыша по бокам от нервной пластинки, клетки которой пролиферируют. На 4-й неделе эктодермальное утолщение проги­бается, образует слуховую ямку, которая превращается в слухо­вой пузырек, обособляющийся от эктодермы и погружающийся внутрь на 6-й неделе. Пузырек состоит из многорядного эпителия, секретирующего эндолимфу, заполняющую просвет пузырька. Эмбриональный слуховой нервный ганглий делится на две части: ганглий преддверия и ганглий улитки. Затем пузырек делится на две части. Одна часть (вестибулярная) превращается в эллипти­ческий мешочек с полукружными каналами, вторая часть обра­зует сферический мешочек и улитковый лабиринт. Улитка растет, размеры завитков увеличиваются, и она отделяется от сферическо­го мешочка. В полукружных каналах развиваются гребешок, в маточке и сферическом мешочке - пятна, в которых расположены нейросенсорные клетки.

В течение 3-го месяца внутриутробного развития в основном заканчивается формирование перепончатого лабиринта. Одновре­менно начинается образование спирального органа. Из эпителия улиткового протока формируется покровная мембрана, под кото­рой дифференцируются волосковые сенсорные клетки. Разветвле­ния периферической части преддверно-улиткового нерва (VIII пара черепных нервов) соединяются с указанными рецепторными (во-лосковыми) клетками.

Одновременно с развитием перепончатого лабиринта вокруг него из мезенхимы образуется вначале слуховая капсула, которая замещается хрящом, а затем костью.

Полость среднего уха развивается из первого глоточного кар­мана и боковой части верхней стенки глотки. Слуховые косточки образуются из хряща первой (молоточек и наковальня) и второй (стремя) висцеральных дуг. Проксимальная часть первого (висце­рального) кармана суживается и превращается в слуховую трубу. Появляющееся напротив формирующейся барабанной полости впячивание эктодермы - жаберная борозда - в дальнейшем пре­образуется в наружный слуховой проход. Наружное ухо начинает формироваться у зародыша на 2-м месяце утробной жизни в виде шести бугорков, окружающих первую жаберную щель.

Ушная раковина у новорожденного уплощена, хрящ ее мягкий, покрывающая его кожа тонкая. Наружный слуховой проход у новорожденного узкий, длинный (около 15 мм), круто изогнут, суживается на границе расширенных медиального и латерального его отделов. Наружный слуховой проход, за исключением барабан­ного кольца, имеет хрящевые стенки.

Барабанная перепонка у новорожденного относительно велика и почти достигает размеров перепонки взрослого человека - 9X8 мм, она наклонена сильнее, чем у взрослого, угол наклона 35 - 40° (у взрослого - 45 - 55°). Размеры слуховых косточек и барабанной полости у новорожденного ребенка и взрослого че­ловека различаются мало. Стенки барабанной полости тонкие, особенно верхняя. Нижняя стенка местами представлена соедини­тельной тканью. Задняя стенка имеет широкое отверстие, веду­щее в сосцевидную пещеру. Сосцевидные ячейки у новорожденного отсутствуют из-за слабого развития сосцевидного отростка.

Слуховая труба у новорожденного прямая, широкая, короткая (17 - 21 мм). В течение 1-го года жизни ребенка слуховая труба растет медленно, на 2-м году - быстрее. Длина слуховой трубы у ребенка в 1-й год жизни равна 20 мм, в 2 года - 30 мм, в 5 лет - 35 мм, у взрослого человека - 35 - 38 мм. Просвет слуховой трубы суживается постепенно от 2,5 мм у 6-месячного ребенка до 1 - 2 мм у 6-летнего ребенка.

Внутреннее ухо к моменту рождения развито хорошо, его раз­меры близки к таковым у взрослого человека. Костные стенки полукружных каналов тонкие, постепенно утолщаются за счет слияния ядер окостенения в пирамиде височной кости.

ОРГАН ВКУСА

Орган вкуса (organ urn gustus) имеет эктодермальное проис­хождение. У некоторых позвоночных животных вкусовые почки располагаются не только в стенках ротовой полости, но и на по­верхности головы, туловища и даже хвоста (например, рыбы). У наземных позвоночных они имеются в ротовой полости, главным образом на языке и нёбе. Однако наибольшего развития они до­стигают у высших млекопитающих. Вкусовые почки развиваются из элементов эмбрионального многослойного эпителия сосочков языка. Уже в периоде своего возникновения они связаны с окон­чаниями соответствующих нервов (язычный, языкоглоточный, блуждающий). Зачатки вкусовых почек вдаются в подлежащий эпителий сосочка и постепенно принимают вид луковиц.

Орган вкуса у человека представлен множеством (около 2 - 3 тыс.) вкусовых почек, расположенных в многослойном эпите­лии боковых поверхностей желобоватых, листовидных и грибо­видных сосочков языка, а также в слизистой оболочке нёба, зева, глотки и надгортанника. В эпителии каждого сосочка, окруженно­го валом, расположено до 200 вкусовых почек, на остальных - по нескольку почек. Между сосочками, а также в ровики сосочков, окруженных валом, открываются выводные протоки слюнных желез языка, выделяющих секрет, омывающий вкусовые почки. Вкусовые почки занимают всю толщину эпителиального покрова сосочков языка.

Вкусовые почки имеют эллипсоидную форму, состоят из 20 - 30 плотно прилежащих друг к другу вкусовых сенсорных эпите-лиоцитов и поддерживающих клеток, в основании которых нахо­дятся базальные клетки (рис. 264). На вершине каждой вкусовой почки имеется вкусовое отверстие (вкусовая пора), которое ведет в маленькую вкусовую ямку, образованную верхушками вкусовых клеток. Большинство клеток проходят через всю вкусовую почку от базальной мембраны до вкусовой ямки, к которой конвергируют апикальные части этих клеток. Мелкие базальные клетки полиэд­рической формы, расположенные на базальной мембране по пери­ферии вкусовой почки, не достигают вкусовой ямки. В них обна­руживаются фигуры митоза. Базальные клетки являются стволо­выми.

Удлиненные вкусовые сенсорные эпителиоциты имеют овальное ядро, расположенное в базальной части клеток. Их цитоплазма бедна рибосомами и элементами гранулярного эндоплазматиче-ского ретикулума, поэтому она выглядит электронно-прозрачной («светлые» клетки). В апикальной части расположены хорошо раз­витый агранулярный эндоплазматический ретикулум и мито­хондрии. Комплекс Гольджи развит слабо. Различают два типа вкусовых сенсорных эпителиоцитов. В клетках первого типа нахо­дится большое количество везикул диаметром около 70 нм с электронно-плотной сердцевиной, содержащих катехоламины. В клетках второго типа везикулы отсутствуют. Возможно, они представляют разные стадии дифференцировки сенсорных клеток. На апикальной поверхности каждой вкусовой клетки, обращенной в сторону вкусовой ямки, имеются микроворсинки, вступающие в контакт с растворенными веществами. Большая часть микро­ворсинок, видимых при световой микроскопии, принадлежит под­держивающим эпителиоцитам, которые окружают сенсорные со всех сторон, кроме апикальной. Продолжительность жизни сен­сорных эпителиоцитов не превышает 10 дней. Новые клетки обра­зуются из базальных, которые делятся, соединяются с афферент­ными нервными волокнами и дифференцируются. При этом ново­образованная вкусовая клетка, связанная с определенным волок­ном, сохраняет свою специфичность (D. Schneider, 1972).

Среди поддерживающих эпителиоцитов различают два типа клеток. Удлиненные клетки, лишенные микроворсинок, распола­гаются по периферии вкусовой почки, отделяя ее от окружающего эпителия. Другие окружают вкусовые сенсорные клетки. Это ци­линдрические клетки, имеющие более электронно-плотную цито­плазму, чем нейросенсорные, богатую гранулярным эндоплазмати-ческим ретикулумом и рибосомами, секреторными гранулами раз­личной зрелости, элементами развитого комплекса Гольджи. По-видимому, они секретируют полисахариды, поступающие во вкусовую ямку. Апикальная поверхность клеток покрыта длинны­ми микроворсинками, в которых проходят пучки микрофиламентов. Переплетающиеся между собой микроворсинки обоих типов кле­ток погружены в электронно-плотное вещество, богатое белком и мукопротеинами, с высокой активностью фосфатаз. Нервные окончания VII и IX пар черепных нервов образуют множественные синапсы с цитолеммой вкусовых сенсорных клеток.

Растворенные в слюне молекулы вкусовых веществ, адсорби­рованные на гликокаликсе микроворсинок, реагируют с рецептор-ными белками, встроенными в цитолемму микроворсинок сенсорных эпителиоцитов. Различают четыре вкусовых ощущения: горькое, соленое, кислое и сладкое. Сенсорные клетки обладают очень высо­кой чувствительностью. Так, порог восприятия (моль-л" 1) поваренной соли составляет 1 10~ , глюкозы - 8 10~ 2 , сахаро­зы - 1 10~ 2 , соляной кислоты - 9 10~ 4 , лимонной кислоты - 2,3 1 (Г 3 , сульфата хинина - 8 - 1(Г б (L. Beidler, 1971). На сли­зистой оболочке языка различают области восприятия вкусовых ощущений. Большинство их смешанные и перекрывают друг дру­га. Однако горький вкус воспринимается главным образом сосоч­ками основания языка. Одна сенсорная клетка воспринимает не­сколько вкусовых раздражений.

Взаимодействие молекул с рецепторами вызывает возникнове­ние рецепторного потенциала, который через синапсы передается афферентным волокнам. Каждое из них разветвляется и иннерви-рует множество нейросенсорных клеток разных вкусовых почек. Афферентные нервные волокна обладают определенным вкусовым профилем. Так, многие волокна языкоглоточного нерва возбужда­ются особенно сильно под действием горьких веществ, а лицевого нерва - под действием кислых, соленых и сладких, однако одни волокна активнее реагируют на соленые вещества, другие - на сладкие.

Нервный импульс от передних 2 /з языка передается по нервным волокнам язычного нерва, а затем барабанной струны лицевого нерва. От желобовидных сосочков, мягкого нёба и нёбных дужек импульс идет по волокнам языкоглот очного нерва, от надгортанни­ка - по блуждающему нерву. Тела I нейронов залегают в соот­ветствующих узлах VII, IX, X пар черепных нервов, их аксоны направляются в составе указанных нервов в чувствительное ядро одиночного пути, расположенное в продолговатом мозге, и закан­чиваются синапсами на телах II нейронов. Центральные отростки этих клеток (II нейронов) направляются через медиальную петлю в таламус, где находятся III нейроны (вентральное зад нелатераль­ное ядро). Аксоны этих нейронов идут к корковому концу вкусо­вого анализатора, расположенному в коре парагиппокампальной извилины, крючка и гиппокампа (аммонова рога)) (рис. 265).

Рис. 264. Строение вкусовой лочки (схема):

1-вкусовая клетка, 2 - поддерживающая клетка, 3 - вкусовая пора, 4 - микроворсин­ки, 5 - эпителиальная клетка, 6 - нервные окончания, 7 - нервное волокно

Рис. 265. Проводящий путь органа вкуса:

/ - задний таламус, 2 - волокна, соединяющие таламус и крючок, 3 - волокна, соеди­няющие ядро одиночного пути и таламус, 4 - ядро одиночного пути, 5 - вкусовые во­локна в составе верхнего гортанного нерва (блуждающий нерв), 6 - вкусовые волокна в составе языкоглоточного нерва, 7 - вкусовые волокна в составе барабанной струны, 8 - язык, 9 - крючок.