Биологическую активность белка определяет. Связь биологической активности белков с их структурой

24.11.2019 Гепатит
Источник: "Пособие для инструкторов-общественников, студентов ", составитель: О.И. Тютюнник (мастер спорта СССР по тяжелой атлетике)

https://do4a.net/data/MetaMirrorCache/b7c755e091c4939dcc1a00e6e8419675.jpg​

СТРОЕНИЕ БЕЛКОВ​

Белки - природные высокомолекулярные органические соединения, построенные из 20 аминокислот. Молекула белка - неразветвляющийся полимер, минимальная структурная единица которого - мономер - представлена аминокислотой. Аминокислоты в молекуле белка соединены карбамидной (полипептидной) связью в длинные цепи. Молекулярная масса - от нескольких тысяч до нескольких миллионов атомных единиц. В зависимости от формы белковой молекулы различают глобулярные и фибриллярные белки.

Глобулярные белки отличаются шарообразной формой молекулы, растворимы в воде и солевых растворах. Хорошая растворимость объясняется локализацией на поверхности глобулы заряженных аминокислотных остатков, окруженных гидратной оболочкой, что обеспечивает хороший контакт с растворителем. К этой группе относятся все ферменты и большинство биологически активных белков.

Фибриллярные белки характеризуются волокнистой структурой, практически нерастворимы в воде и солевых растворах. Полипептидные цепи в молекулах расположены параллельно одна другой. Участвуют в образовании структурных элементов соединительной ткани (коллагены, кератины, эластины). Особая группа - сложные белки, в состав которых кроме аминокислот входят углеводы, нуклеиновые кислоты и т.д. Во всех живых организмах белки играют исключительно важную роль. Они участвуют в построении клеток и тканей, являются биокатализаторами (ферменты), гормонами, дыхательными пигментами (гемоглобины), защитными веществами (иммуноглобулины) и др. Биосинтез белков происходит на рибосомах и определяется кодом нуклеиновых кислот в процессе трансляции.

20 аминокислот, соединенных друг с другом в цени и чередующихся в различных последовательностях, являют всё многообразие природных белков. Организм человека способен образовывать многие аминокислоты из других веществ пиши, однако 9 аминокислот он не может синтезировать сам и обязательно должен получать их с пищей. Такие кислоты называют незаменимыми, или эссенциальными. Это валин, лейцин, изолейцин, лизин, метионин, треонин, триптофан, фенилаланин, гистидин. К заменимым аминокислотам относятся аланин, аспарагин, аспарагиновая кислота, аргинин, глицин, глутамин, глутаминовая кислота, пролин, цистеин, тирозин, серии. Если в белке недостает какой-либо незаменимой аминокислоты, белок не будет усвоен полностью. С этой точки зрения продукты животного происхождения (мясо, рыба, молоко) больше соответствуют потребностям человека, чем растительные продукты.

Первичная структура - понятие, обозначающее последовательность аминокислотных остатков в белке. Пептидная связь - основной вид связи, определяющий первичную структуру.

Вторичная структура характеризует форму белковой цепи в пространстве. Эта форма изменяется в зависимости от набора аминокислот и их последовательности в полипептидной цепи. Различают две основные формы вторичной структуры: α-спираль и β-конфигурацию. Форму α-спирали имеют многие белки. Представить её можно как правильную спираль, образованную на поверхности цилиндра. Устойчивость спиралевидной конфигурации определяется многочисленными водородными связями между СО- и NH-группами пептидных связей; β -конфигурация свойственна небольшому числу белков. По форме эту структуру можно сравнить с мехами гармошки (складчатая структура)

Третичная структура возникает благодаря изгибам пептидной цепи в пространстве. Представить эту конфигурацию можно как спирать, образованную на цилиндре, ось которого периодически меняет направление, что приводит к образованию изгибов.

СВОЙСТВА БЕЛКОВ​

Растворимость зависит от рН раствора, природы растворителя (его диэлектрической проницаемости), концентрации электролита, т.е. от ионной силы и вида противоиона и от структуры белка. Хорошо растворимы глобулярные белки, значительно хуже - фибриллярные. При низкой ионной силе ионы повышают растворимость белка, нейтрализуя его заряженные группы. Так, эуглобулины нерастворимы в воде, но растворяются в слабых растворах поваренной соли. При высокой ионной силе ионы способствуют осаждению белков, как бы конкурируя с ними за молекулы воды - так называемое высаливание белков. Органические растворители осаждают белки, вызывая их денатурацию.

Электролитические свойства белков обусловлены тем, что в основной среде молекулы ведут себя как полианионы с отрицательным, а в кислой среде - с положительным суммарным зарядом. Это определяет способность белков мигрировать в электрическом поле к аноду или катоду, в зависимости от суммарного заряда. На этом свойстве белков основан анализ их смеси - электрофорез.
Денатурация белка - следствие разрыва слабых связей, ведущего к разрушению вторичной и третичной структур. Молекула денатурированного белка неупорядочена - она приобретает характер случайного (статистического) клубка. Как правило, денатурация белка необратима, но в некоторых случаях после устранения денатурирующего агента может произойти ренатурация - восстановление вторичной и третичной структур и свойств.

Денатурирующие агенты: высокие температуры (разрыв водородных и гидрофобных связей), кислоты и основания (нарушение электростатических связей), органические растворители (нарушение преимущественно гидрофобных связей).

К денатурирующим агентам относятся также детергенты, соли Тяжелых металлов, ультрафиолет и другие виды излучений.

Денатурация не нарушает ковалентных связей, но повышает их доступность для других факторов, в частности для энзимов.

ФУНКЦИИ БЕЛКОВ​

Каталитическая или ферментативная. Все химические превращения в живом организме протекают при участии катализаторов. Биологические катализаторы (ферменты) по химической природе белки, катализирующие в организме химические превращения, из которых складывается обмен веществ.

Транспортная функция. Белки транспортируют или переносят биологически значимые соединения в организме. В одних случаях транспортируемое соединение сорбируется белковой молекулой. Это защищает их от разрушения и обеспечивает перенос с током крови. Этот вид транспорта называют пассивным. С помощью мембранных белков переносятся соединения из зон с низкой концентрацией в зону с высокой. Это сопряжено с заметным потреблением энергии и называется активным транспортом.

Механохимическая функция - способность некоторых белков изменять конформацию, т.е. уменьшать длину молекулы, сокращаться. Такие белки называют сократительными (мышечные белки), поскольку они выполняют механическую работу за счет энергии химических связей.

Структурная (пластическая) функция выполняется главным образом фибриллярными белками - элементами клеточных мембран. Эти белки в составе соединительных тканей обеспечивают их прочность и эластичность: кератин шерсти и волос, коллагены сухожилий, кожи, хрящей, стенок сосудов и связывающих тканей.

Гормональная функция (функция управления) реализуется гормонами пептидной или белковой природы. Они влияют на продукцию или активность белков-ферментов и изменяют скорость катализируемых ими химических реакций, т.е. управляют обменными процессами

Защитная функция белков реализуется антителами, интерферонами, фибриногеном.

Антитела - соединения белковой природы, синтез которых индуцируется в процессе иммунного ответа - реакции организма на проникновение во внутреннюю среду посторонних белков или других антигенных компонентов (например, высокомолекулярных углеводов). Антитела, соединяясь с антигеном, образуют нерастворимый комплекс, делая антиген безопасным для организма.

Интерфероны - глюкопротеины, синтезирующиеся клеткой после проникновения в неё вируса. В отличие от антител интерфероны не взаимодействуют с антигеном, а вызывают образование внутриклеточных ферментов. Они блокируют синтез вирусных белков, препятствуя копированию вирусной информации. Это приостанавливает размножение вируса.

Фибриноген - растворимый белок плазмы, который на последней стадии процесса свёртывания крови трансформируется в фибрин - нерастворимый белок. Фибрин образует каркас тромба, ограничивающего кровопотерю.

Плазмин - белок плазмы крови, катализирующий расщепление фибрина. Это обеспечивает восстановление проходимости сосуда, закупоренного фибриновым сгустком.

Энергетическая функция белков обеспечивается за счет части аминокислот, высвобождающихся при расщеплении белка в тканях. В процессе окислительно восстановительного распада аминокислоты высвобождают энергию и синтезируют энергоноситель - АТФ (аденозинтрифосфорная кислота). На долю белка приходится около 18% энергопотребления человека.

УСВОЕНИЕ БЕЛКОВ​

Среди органических веществ живой материи белки по своему значению и биологическим функциям занимают особое место. Около 30 % всех белков человеческого тела находятся в мышцах, около 20% - в костях и сухожилиях и около 10% - в коже. Но наиболее важными белками являются ферменты. Количество их в организме невелико, однако они управляют рядом весьма важных химических реакций. Все процессы, происходящие в организме: переваривание пищи, окислительные реакции, активность желез внутренней секреции, мышечная деятельность и работа мозга - регулируются ферментами. Разнообразие их огромно. В единичной клетке их многие сотни.

Белки или, как их иначе называют, протеины, имеют очень сложное строение и являются наиболее сложными из питательных веществ. Белки - обязательная составная часть всех живых клеток. В состав белков входят углерод , водород , кислород , азот , сера и иногда фосфор . Наиболее характерно для белка наличие в нем азота .

Другие питательные вещества азота не содержат. Поэтому белок называют азотсодержащим веществом. Основные азотсодержащие вещества, из которых состоит белок - это аминокислоты. Количество аминокислот невелико - их известно только 28. Все громадное разнообразие встречающихся в природе белков представляет собой различное сочетание известных аминокислот. От их сочетания зависят свойства и качества белков.

При соединении двух или нескольких аминокислот образуется более сложное соединение - полипептид . Полипептиды, соединяясь, образуют ещё более крупные и сложные частицы и в итоге - сложную молекулу белка.

В пищеварительном тракте через ряд промежуточных стадий (альбумозы и пептоны) белки расщепляются на более простые соединения (полипептиды) и далее на аминокислоты. Аминокислоты, в отличие от белка, легко всасываются и усваиваются организмом. Они используются организмом для образования собственного специфического белка. Если же вследствие избыточного поступления аминокислот их расщепление в тканях продолжается, то они окисляются до углекислого газа и воды.

Большинство белков растворяется в воде. Молекулы белков в силу их больших размеров почти не проходят через поры клеточных мембран. При нагревании водные растворы белков свёртываются. Есть белки (например, желатина), которые растворяются в воде только при нагревании.

При поглощении пища сначала попадает в ротовую полость, а затем по пищеводу в желудок. Чистый желудочный сок бесцветен, имеет кислую реакцию, которая обусловлена наличием соляной кислоты в концентрации 0,5%.

Желудочный сок обладает свойством переваривать пищу, что связано с наличием в нём ферментов. Он содержит пепсин - фермент, расщепляющий белок на пептоны и альбумозы. Железами желудка пепсин вырабатывается в неактивном виде, активным становится при воздействии на него соляной кислоты. Пепсин действует только в кислой среде и при попадании в щелочную среду становится неактивным.

Пища, поступив в желудок, задерживается в нём от 3 до 10 часов. Срок пребывания пищи в желудке зависит от её характера и физического состояния - жидкая она или твёрдая. Вода покидает желудок немедленно после поступления. Пища, содержащая большее количество белков, задерживается в желудке дольше, чем углеводная; ещё дольше остаётся в желудке жирная пища. Продвижение пищи происходит благодаря сокращению желудка, что способствует переходу в пилорическую часть, а затем в двенадцатиперстную кишку уже значительно переваренной пищевой кашицы, где происходит её дальнейшее переваривание. Здесь на пищевую кашицу изливается сок кишечных желёз, которыми усеяна слизистая оболочка кишки, а также сок поджелудочной железы и желчь. Под влиянием этих соков пищевые вещества - белки, жиры, углеводы - подвергаются дальнейшему расщеплению и доводятся до такого состояния, когда могут всосаться в кровь и лимфу.
Поджелудочный сок бесцветен и имеет щелочную реакцию.

Одним из основных ферментов является трипсин , находящийся в соке поджелудочной железы в недеятельном состоянии в виде трипсиногена. Трипсиноген не может расщеплять белки, если не будет переведен в активное состояние, т.е. в трипсин. Это происходит под влиянием находящегося в кишечном соке вещества энтерокиназы . Энтерокиназа образуется в слизистой оболочке кишечника. В двенадцатиперстной кишке действие пепсина прекращается, так как пепсин- действует только в кислой среде. Дальнейшее переваривание белков продолжается уже под влиянием трипсина.

Трипсин очень активен в щелочной среде. Его действие продолжается и в кислой среде, но активность падает. Трипсин действует на белки и расщепляет их до альбумоз и пептонов и далее до аминокислот.

В желудке и двенадцатиперстной кишке белки, жиры и углеводы расщепляются почти полностью, только часть их остается непереваренной. В тонких кишках под влиянием кишечного сока происходит окончательное расщепление всех пищевых веществ и всасывание продуктов в кровь. Это происходит через капилляры, каждый из которых подходит к ворсинке, расположенной на стенке тонких кишок.

ОБМЕН БЕЛКОВ​

После расщепления белков в пищеварительном тракте образовавшиеся аминокислоты всасываются в кровь вместе с незначительным количеством полипептидов - соединений, состоящих из нескольких аминокислот. Из аминокислот клетки нашего тела синтезируют белок, который отличается от потребленного белка и характерен для данного человеческого организма.

Образование нового белка в организме человека и животных идёт беспрерывно, так как в течение всей жизни взамен отмирающих клеток крови, кожи, слизистой оболочки кишечника и т.д. создаются новые, молодые клетки. Белки поступают с пищей в пищеварительный канал, где они подвергаются расщеплению на аминокислоты, и уже из всосавшихся аминокислот образуется специфичный для данных клеток белок. Если же, минуя пищеварительный тракт, ввести белок непосредственно в кровь, то он не только не может быть использован человеческим организмом, но и вызовет ряд серьёзных осложнений. На такое введение белка организм отвечает резким повышением температуры и некоторыми другими явлениями. При повторном введении белка через 15-20 дней может наступить даже смерть при параличе дыхания, резком нарушении сердечной деятельности и общих судорогах.

Белки не могут быть заменены какими-либо другими пищевыми веществами, так как синтез белка в организме возможен только из аминокислот. Поэтому так необходимо поступление всех или наиболее важных аминокислот.

Из известных аминокислот не все имеют одинаковую ценность для организма. Среди них есть такие, которые могут быть заменены другими или синтезированными в организме из других аминокислот. Наряду с этим есть незаменимые аминокислоты, при отсутствии которых или даже одной из них белковый обмен в организме нарушается.

Белки не всегда содержат все аминокислоты, в одних - большее количество необходимых организму аминокислот, в других - меньшее. Разные белки содержат различные аминокислоты и б разных соотношениях.

Белки, в состав которых входят все необходимые организму аминокислоты, называются полноценными. Белки, не содержащие всех необходимых аминокислот, являются неполноценными.

Для человека важно поступление полноценных белков, так как из них организм может свободно синтезировать свои специфические белки. Однако полноценный белок может быть заменен двумя или тремя неполноценными белками, которые, дополняя друг друга, дают в сумме все необходимые аминокислоты. Следовательно, для нормальной жизнедеятельности организма необходимо, чтобы в пище содержались полноценные белки или набор неполноценных белков, по аминокислотному содержанию равных полноценным белкам.

Поступление полноценных белков с пищей крайне важно для растущего организма, так как в организме ребёнка наряду с восстановлением отмирающих клеток, как у взрослых, в большом количестве создаются новые клетки.

Обычная смешанная пища содержит разнообразные белки, которые в сумме обеспечивают потребность организма в аминокислотах. Важны не только биологическая ценность поступающих с пищей белков, но и их количество. При недостаточном поступлении белков нормальный рост организма приостанавливается или задерживается, так как потребности в белке не покрываются из-за его недостаточного поступления.

К полноценным белкам относятся преимущественно белки животного происхождения, кроме желатины, являющейся неполноценным белком. Неполноценные белки - преимущественно растительного происхождения. Однако некоторые растения (картофель, бобовые и др.) содержат полноценные белки. Из животных белков особенно большую ценность для организма представляют белки мяса, яиц, молока и др.

Что такое белки в целом и какую роль они играют в человеческом организме. Каковы функции белков, что такое азотистый баланс и какова биологическая ценность белков. Это неполный список вопросов затронутых в данной статье.


Продолжаем серию статей "ОБМЕН УГЛЕВОДОВ В ОРГАНИЗМЕ", "ОБМЕН ЖИРОВ В ОРГАНИЗМЕ" статьей "ОБМЕН БЕЛКОВ В ОРГАНИЗМЕ". Информация рассчитана на широкий круг читателей, при одобрении со стороны читателей серия статей, посвященных физиологии человека, будет продолжена.

ФУНКЦИИ БЕЛКОВ
  • Пластическая функция белков состоит в обеспечении роста и развития организма за счет процессов биосинтеза. Белки входят в состав всех клеток организма и межтканевых структур.
  • Ферментативная активность белков регулирует скорость протекания биохимических реакций. Белки-ферменты определяют все стороны обмена веществ и образования энергии не только из самих протеинов, но из углеводов и жиров.
  • Защитная функция белков состоит в образовании иммунных белков — антител. Белки способны связывать токсины и яды а также обеспечивать свертываемость крови (гемостаз).
  • Транспортная функция заключается в переносе кислорода и двуокиси углерода эритроцитным белком гемоглобином , а также в связывании и переносе некоторых ионов (железо, медь, водород), лекарственных веществ, токсинов.
  • Энергетическая роль белков обусловлена их способностью освобождать при окислении энергию. Однако при этом пластическая роль белков в метаболизме превосходит их энергетическую , а также пластическую роль других питательных веществ. Особенно велика потребность в белке в периоды роста, беременности, выздоровления после тяжелых заболеваний.
    • В пищеварительном тракте белки расщепляются до аминокислот и простейших полипептидов , из которых в дальнейшем клетками различных тканей и органов, в частности печени , синтезируются специфические для них белки. Синтезированные белки используются для восстановления разрушенных и роста новых клеток, синтеза ферментов и гормонов.
АЗОТИСТЫЙ БАЛАНС

Косвенным показателем активности обмена белков служит так называемый азотистый баланс. Азотистым балансом называют разность между количеством азота, поступившего с пищей, и количеством азота, выделяемого из организма в виде конечных метаболитов. При расчетах азотистого баланса исходят из того факта, что в белке содержится около 16% азота, то есть каждые 16 г азота соответствуют 100 г белка.

  • Если количество поступившего азота равно количеству выделенного, то можно говорить об азотистом равновесии . Для поддержания азотистого равновесия в организме требуется как минимум 30-45г животного белка в сутки (физиологический минимум белка ).
  • Состояние, при котором количество поступившего азота превышает выделенное, называют положительным азотистым балансом . Состояние, при котором количество поступившего азота меньше выделенного, называют отрицательным азотистым балансом .
  • Азотистое равновесие у здорового человека является одним из наиболее стабильных метаболических показателей.Уровень азотистого равновесия зависит от условий жизнедеятельности человека, вида совершаемой работы, функционального состояния ЦНС и количества поступаемых в организм жиров и углеводов.
КОЭФФИЦИЕНТ ИЗНАШИВАНИЯ РУБНЕРА

Белки органов и тканей нуждаются в постоянном обновлении. Около 400 г белка из 6 кг, составляющих белковый "фонд" организма, ежедневно подвергается катаболизму и должно быть возмещено эквивалентным количеством вновь образованных белков. Минимальное количество белка, постоянно распадающегося в организме, называется коэффициентом изнашивания . Потеря белка у человека массой 70 кг составляет 23 г/сут. Поступление в организм белка в меньшем количестве ведет к отрицательному азотистому балансу, неудовлетворяющему пластические и энергетические потребности организма.

БИОЛОГИЧЕСКАЯ ЦЕННОСТЬ БЕЛКОВ

Вне зависимости от видоспецифичности все многообразные белковые структуры содержат в своем составе всего 20 аминокислот . Для нормального метаболизма имеет значение не только количество получаемого человеком белка, но и его качественный состав, а именно соотношение заменимых и незаменимых аминокислот .

  • Незаменимыми являются 10 аминокислот, которые не синтезируются в организме человека, но вместе с тем абсолютно необходимы для нормальной жизнедеятельности. Отсутствие даже одной из них ведет к отрицательному азотистому балансу, потере массы тела и другим несовместимым с жизью нарушениям.
    • Незаменимыми аминокислотами являются валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, цистеин , незаменимыми условно аргинин и гистидин . Все эти аминокислоты человек получает только с пищей.
  • Заменимые аминокислоты также необходимы для жизнедеятельности человека, но они могут синтезироваться и в самом организме из продуктов обмена углеводов и липидов. К ним относятся гликокол, аланин, цистеин, глутаминовая и аспарагиновая кислоты, тирозин, пролин, серин, глицин ; условно заменимые аргинин и гистидин .
  • Белки, содержащие полный набор незаменимых аминокислот, называются полноценными и имеют максимальную биологическую ценность (мясо, рыба, яйца, икра, молоко, грибы, картофель ).
  • Белки в которых нет хотя бы одной незаменимой аминокислоты или если они содержатся в недостаточных количествах называются неполноценными (растительные белки ). В связи с этим для удовлетворения потребности в аминокислотах наиболее рациональной является разнообразная пища с преобладанием белков животного происхождения.
  • Суточная потребность в белках у взрослого человека составляет 80-100 г белка, в том числе 30 г животного происхождения, а при физических нагрузках — 130-150 г. Эти количества в среднем соответствуют физиологическому оптимуму белка — 1 г на 1 кг массы тела.
  • Животный белок пищи практически полностью превращается в собственные белки организма. Синтез же белков организма из растительных белков идет менее эффективно: коэффициент превращения составляет 0,6 - 0,7 по причине дисбаланса незаменимых аминокислот в животных и растительных белках.
  • При питании растительными белками , действует "правило минимума ", согласно которому синтез собственного белка зависит от незаменимой аминокислоты, которая поступает с пищей в минимальном количестве .

После приема пищи, особенно белковой, отмечено повышение энергообмена и теплопродукции . При употреблении смешанной пищи энергообмен возрастает примерно на 6%, при белковом питании повышение может достигнуть 30-40% общей энергетической ценности всего введенного в организм белка. Повышение энергообмена начинается через 1-2 ч, достигает максимума через 3 ч и продолжается в течение 7 — 8 ч после приема пищи.

Гормональная регуляция метаболизма белков обеспечивает обеспечивает динамическое равновесие их синтеза и распада.

  • Анаболизм белков контролируется гормонами аденогипофиза (соматотропин ), поджелудочной железы (инсулин ), мужских половых желез (адроген ). Усиление анаболической фазы метаболизма белков при избытке этих гормонов выражается в усиленном росте и увеличении массы тела. Недостаток анаболитических гормонов вызывает задержку роста у детей.
  • Катаболизм белков регулируется гормонами щитовидной железы (тироксин и трийодтиронон ), коркового (клюкокортикоиды ) и мозгового (адреналин ) вещества надпочечников. Избыток этих гормонов усиливает распад белков в тканях, что сопровождается истощением и отрицательным азотистым балансом. Недостаток гормонов, например, щитовидной железы сопровождается ожирением.

Белки являются, безусловно, одними из важнейших компонентов в процессе жизнедеятельности организма. А главное, они играют чрезвычайно важную роль в питании человека, так как являются главной составной частью клеток всех органов и тканей организма. Недаром ведь в 2005 году по законопроекту, подготовленному Минздравсоцразвития, "в целях повышения качества питания в новой потребительской корзине предлагается увеличить объем продуктов, содержащих белок животного происхождения, одновременно сократив объем продуктов, содержащих углеводы".

Cообщение # 3367, написанное 05-03-2014 в 14:52 МСК, удалено.

# 1347 · 07-06-2013 в 12:37 МСК · ip адрес записан ·

Биологические науки можно охарактеризовать как науки, изучающие механизмы, с помощью которых молекулы осуществляют свои специфические функции в живых клетках.

Механизм действия простых неорганических ионов и органических молекул во многих случаях удалось до некоторой степени объяснить. Мы имеем, например, известное представление о физиологических последствиях повышения или понижения осмотического давления жидкостей тела при введении или удалении хлористого натрия. Другим примером служит нарушение проведения нервных импульсов в синапсах, возникающее после введения физостигмина, которое можно частично отнести за счет действия этого наркотика на фермент холинэстеразу. Однако даже такие хорошо изученные системы продолжают оставаться областью поисков и спекуляций для исследователей, что свидетельствует о сложности клетки.

Химики, изучающие белок, естественно, сознают, что легче всего приблизиться к пониманию функций клетки, изучая структуру и функцию молекул белка. Эта точка зрения, по-видимому, не лишена оснований. За исключением тех редких явлений в биологии, которые носят чисто физический характер, «жизнь» клеток основана главным образом на совокупности ферментативных катализов и их регулировании.

Область химии белка теперь достигла достаточной сложности, чтобы думать о белках скорее как об органических веществах, а не как о конгломератах аминокислот. Несмотря на необычайную сложность молекулы белка, мы можем в настоящее время количественно описать такие явления, как денатурация, в терминах довольно хорошо установленных изменений в специфических типах химических связей. Такая благоприятная ситуация дает нам возможность найти разумные пути для сопоставления специфических особенностей ковалентной и нековалентной структуры белков с биологической активностью. Белковые молекулы, по-видимому, состоят из одной или нескольких полипептидных цепей, соединенных между собой и удерживаемых в виде спиральной структуры благодаря наличию системы разнообразных химических связей различной силы. При изменении какой-либо из этих связей появляется вещество, которое не идентично первоначальной нативной молекуле и которое в известном смысле можно рассматривать как денатурированный белок. Однако с точки зрения функции мы можем придерживаться более строгих критериев. Нативность фермента, выражающуюся в его способности катализировать некую определенную реакцию, не следует связывать со всей его структурой.

Изучение последствий частичного специфического разрушения биологически активных белков начато совсем недавно. Однако еще 20 с лишним лет назад было показано, что замещение некоторых активных групп белков или превращение их в какие-либо другие группы не сопровождается потерей активности. Пожалуй, наиболее хорошо изученный пример такого рода исследований - это серия работ Херриота и Нортропа по Изучению активности пепсина при постепенном ацетилировании его молекулы. Пепсин обрабатывали кетеном, и при этом происходило превращение свободных аминогрупп и гидроксильных групп в их ацетилпроизводные. С помощью этого метода Херриот смог получить кристаллическое ацетилпроизводное пепсина, содержащее 7 ацетильных групп на молекулу пепсина. Ацетилпепсин обладал 60% каталитической активности исходного фермента. Херриот показал, что спектр поглощения в ультрафиолете этого вещества, обладавшего 60% активности, изменился настолько, что это изменение можно было объяснить блокированием трех гидроксильных групп тирозина. При осторожном гидролизе ацетилированного пепсина при pH 0 или при pH 10,0 происходило отщепление трех ацетильных групп, сопровождавшееся восстановлением каталитической активности фермента. Эти, а также некоторые другие исследования показали, что остатки тирозина имеют какое-то отношение к активности пепсина, тогда как ацетилирование ряда свободных аминогрупп белка не оказывает влияния на его функцию.

Такого рода опыты стали в настоящее время относительно обычными, и нет сомнения в том, что можно несколько изменить строение многих ферментов и гормонов, не вызывая их инактивации. Несмотря на эти данные, еще сравнительно недавно считали, что структура биологически активных белков более или менее «неприкосновенна» и что для осуществления своих функций эти белки должны сохранять свою трехмерную структуру во всей ее целостности.

Эта концепция поддерживается некоторыми теоретическими соображениями, согласно которым молекула белка может иметь несколько различных резонансных конфигураций. Наблюдения, проведенные в области иммунологии, также говорят в пользу этой концепции. Хорошо известно, что относительно небольшие изменения, например, в строении гаптена, могут вызвать значительный сдвиг эффективности реакции со специфическим антителом.

Идея «неприкосновенности» структуры белка теперь постепенно заменяется идеей о «функциональной значимости части молекулы». Вскоре после того, как Сэнджер с сотрудниками завершили свои фундаментальные исследования инсулина быка, Лене показал, что определенное нарушение структуры гормона, а именно удаление С-концевого остатка аланина в цепи В, не ведет к потере биологической активности. Эволюционное значение этого факта в свое время было неясно, поскольку это был первый опыт такого рода и можно было рассматривать его как отдельный нетипичный случай. Однако в настоящее время накопилось много подобных наблюдений, и необходимо заняться вопросом о том, почему С-концевой остаток аланина сохранился в качестве постоянного структурного элемента молекулы инсулина, если этот остаток не играет роли в биологической активности гормона.

Инсулин подвергался и другим более подробным исследованиям этого типа. Однако для того, чтобы выяснить, до какой степени можно нарушить структуру белков, не вызывая при этом их инактивации, мы обратимся к трем другим примерам, о которых имеется несколько больше сведений: 1) гормону гипофиза, АКТГ; 2) ферменту поджелудочной железы - рибонуклеазе и 3) растительному ферменту - папаину. При последующем обсуждении этих примеров мы используем более или менее одновременно два различных подхода к структурной основе биологической активности: во-первых, мы постараемся показать, что активные полипептиды можно подвергать разрушению, не нарушая их функции, т. е. выявить части структуры, не имеющие существенного значения для функции; во-вторых, следует определить существенные части структуры, т. е. активные центры.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

31. Четвертичная структура белка определяется:
а) спирализацией полепептидной цепи
б) пространственной конфигурацией полипептидной цепи
в)спирализацией нескольких полипептидных цепей
г) соединением нескольких полипептидных цепей.
32.В поддержании четвертичной структуры белка не принимаются участии:
а) пептидные б) водородные в) ионные г) гидрофобные.
33. Физико-химические и биологические свойства белка полностью определяет структура:
а) первичная б) вторичная в) третичная г) четвертичная.
34. К фибриллярным белкам относятся:
а) глобулин, альбумин, коллаген б) коллаген, кератин, миозин
в) миозин, инсулин, трипсин г) альбумин, миозин, фиброин.
35. К глобулярным белкам относятся:
а) фибриноген, инсулин, трипсин б)трипсин, актин, эластин
в) эластин, тромбин, альбумин г) альбумин, глобулин, глюкагон.
36. Молекула белка приобретает природные (нативные) свойства в результате самосборки структуры
а) первичной б) в основном первичной, реже вторичной
в) четвертичной г) в основном третичной, реже четвертичной.
37. Мономерами молекул нуклеиновых кислот являются:
а) нуклеозиды б) нуклеотиды в) полинуклеотиды г)азотистые основания.
38. Молекула ДНК содержит азотистые основания:
а) аденин,гуанин,урацил,цитозин б) цитозин,гуанин,аденин,тимин
в) тимин,урацил,тимин,цитозин г) аденин,урацил,тимин,цитозин

39.Молекула РНК содержит азотистые основания:
а) аденин,гуанин,урацил,цитозин б) цитозин,гуанин,аденин,тимин в) тимин,урацил,аденин,гуанин г) аденин,урацил,тимин,цитозин.





Проверочная работа «Биосинтез белка»

1. Какие органоиды отвечают за синтез белка?
2. Как называются структуры ядра, хранящие информацию о белках организма?
3. Какая молекула является матрицей (шаблоном) для синтеза и-РНК?
4. Как называется процесс синтеза полипептидной цепи белка на рибосоме?
5. На какой молекуле находится триплет называемый кодон?
6. На какой молекуле находится триплет называемый антикодон?
7. По какому принципу антикодон узнает кодон?
8. Где в клетке происходит образование комплекса т-РНК+аминокислота?
9. Как называется первый этап биосинтеза белка?
10. Дана полипептидная цепь: -ВАЛ - АРГ - АСП- Определить структуру соответствующих цепей ДНК.

НУЖНА ПОМОЩЬ ПО БИОЛОГИИ ИБО СДОХНУ С ТРОЙКОЙ В ЧЕТВЕРТИ!

1) Фрагмент гена ДНК имеет след. последовательность нуклеотидов ТЦГГТЦААЦТТАГЦТ. Определите последовательность нуклеотидов и-РНК и аминокислот в полипептидной цепи белка.
2) Определите последовательность нуклеотидов иРНК, синтезированную с правой цепи участка молекулы ДНК, если её левая цепь имеет след. последовательность: -Ц-Г-А-Г-Т-Т-Т-Г-Г-А-Т-Т-Ц-Г-Т-Г.
3) Определите последовательность аминокислотных остатков в молекуле белка
-Г-Т-А-А-Г-А-Т-Т-Т-Ц-Т-Ц-Г-Т-Г
4) Определите последовательность нуклеотидов в молекуле иРНК, если участок молекулы белка, синтезированный с неё имеет вид: - треонин - метионин- гистидин - валин- арг. - пролин - цистеин -.
5) Как изменится структура белка, если из кодирующего его участка ДНК:
-Г-А-Т-А-Ц-Ц-Г-А-Т-А-А-А-Г-А-Ц- удалить шестой и тринадцатый (слева) нуклеотиды?
6) Какие изменения произойдут в строении белка, если в кодирующем его участке ДНК: -Т-А-А-Ц-А-Г-А-Г-Г-А-Ц-Ц-А-А-Г-... между 10 и 11 нуклеотидами включен цитозин, между 13 и 14 - тимин, а на конце рядом с гуанином пробивается ещё один гуанин?
7) Определите иРНК и первичную структуру белка, закодированного в участке ДНК: -Г-Т-Т-Ц-Т-А-А-А-А-Г-Г-Ц-Ц-А-Т- .. если 5 -й нуклеотид будет удалён, а между 8 и 9 нуклеотидом встанет тимидиловый нуклеотид?
8) Полипептид состоит из след. друг за другом расположенных аминокислот: валин - аланин - глицин - лизин - триптофан - валин - серни- глутаминовая кислота. Определите структуру участка ДНК, кодирующего выше указанный полипептид.
9) Аспарагин - глицин - фенилаланин - пролин - треонин - метионин - лизин - валин - глицин.... аминокислоты, последовательно составляют полипептид. Определите структуру участка ДНК, кодирующего данный полипептид.


Белки, такие как коллаген, кератин, эластин, используют в косметологии давно. А вот пептиды начали применять сравнительно недавно. И, подобно тому как восходящая звезда часто затмевает стареющую примадонну, пептиды грозят полностью затмить белки на косметической сцене. Что это, всего лишь эффект новизны или пептиды действительно предлагают что-то новое по сравнению с белками? Давайте сравним.
Размер имеет значение
Основной проблемой белков при нанесении на кожу в составе косметических средств или фармацевтических препаратов является большой размер молекул, что исключает проникновение этих молекул через роговой слой. Даже в белковых гидролизатах, которые обычно используют в косметике, остаются слишком большие фрагменты, чтобы можно было говорить об их эффективном проникновении в кожу. Крупные белковые полимеры на поверхности кожи формируют пленку, которая при достаточной влажности воздуха увлажняет и смягчает роговой слой или, наоборот, может оказать лифтинговый эффект и вызвать чувство стянутости, если на улице очень сухо, ветрено или морозно. Ho такой эффект характерен в большей степени для линейных полипептидов.
Многие пептиды, которые на порядки меньше белков, уже способны пройти через роговой слой и достичь слоя живых клеток. Конечно, через неповрежденную кожу даже пептидам проникнуть сложно, но на здоровой коже всегда имеются микротрещины, потертости, участки с нарушенным барьером и т.д. Кроме того, проницаемость кожи можно повысить - сделать пилинг, создать состояние гипергидратации или применить энхансеры проницаемости.
В косметологии есть особая категория препаратов - энзимные (ферментативные) пилинги, в которых белковая фракция представлена про-теолитическими ферментами. В данном случае как раз и не нужно, чтобы белок-фермент проходил через роговой слой. Об этих препаратах мы поговорим отдельно.
Стабильность в готовом продукте
Как уже было сказано выше, все большие белки имеют сложную трехмерную структуру, которая определяет их биологические свойства. Поэтому белки утрачивают свою функциональность, как только их структура дезорганизуется, что часто и происходит в косметической рецептуре.
Структура небольших пептидов отличается более высокой стабильностью в большинстве косметических композиций.
Видоспецифичность
Белки видоспецифичны, поэтому коллаген, скажем, рыб или птиц не будет «работать» в организме человека до тех пор, пока его не разберут на отдельные аминокислоты и не построят из них «правильный» коллаген.
А вот малые пептиды, как правило, универсальны, и в этой связи сигнальные молекулы животных и даже растений могут влиять и на клетки человека. Объясняют это тем, что система клеточной регуляции так же, как и базовые механизмы защиты, формировалась на самых ранних этапах эволюции живых существ и впоследствии уже мало изменялась. Это позволяет взять пептид, выделенный, скажем, из сои, и использовать его для стимуляции обновления клеток кожи. Все эти свойства ставят пептиды в разряд самых перспективных и интересных косметических ингредиентов сегодняшнего, а скорее всего, и завтрашнего дня.