Важная особенность строения органических соединений клетки. Особенности строения органических веществ

Органическая химия - раздел химии, изучающий соединения углерода, их структуру, свойства, методы синтеза, а также законы их превращений. Органическими называют соединения углерода с другими элементами (в основном с H, N, O, S, P, Si, Ge и др.).

Уникальная способность атомов углерода связываться друг с другом, образуя цепочки различной длины, циклические структуры разного размера, каркасные соединения, соединения со многими элементами, различные по составу и строению, обусловливает многообразие органических соединений. К настоящему времени число известных органических соединений на много превышает 10 млн. и увеличивается каждый год на 250-300 тыс. Окружающий нас мир построен в основном из органических соединений, к ним относятся: пища, одежда, топливо, красители, лекарства, моющие средства, материалы для самых различных отраслей техники и народного хозяйства. Органические соединения играют ключевую роль в существовании живых организмов.

На стыке органической химии с неорганической химией, биохимией и медициной возникли химия метало- и элементорганических соединений, биоорганическая и медицинская химия, химия высокомолекулярных соеди-нений.

Основным методом органической химии является синтез. Органическая химия изучает не только соединения, полученные из растительных и животных источников (природные вещества), но в основном соединения, созданные искусственно с помощью лабораторного и промышленного синтеза.

История развития органической химии

Способы получения различных органических веществ были известны ещё с древности. Так, египтяне и римляне использовали красители растительного проис-хож-де-ния - индиго и ализарин. Многие народы владели секретами производства спиртных на-пит-ков и уксуса из сахар- и крахмалсодержащего сырья.

Во времена средневековья к этим знаниям практически ничего не прибавилось, некоторый прогресс начался только в 16-17 веках (период ятрохимии), когда путем перегонки растительных продуктов были выделены новые органические соединения. В 1769-1785 г. К.В. Шееле выделил несколько органических кислот: яблочную, винную, лимонную, галловую, молочную и щавелевую. В 1773 г. Г.Ф. Руэль выделил мочевину из человеческой мочи. Выделенные из животного и растительного сырья вещества имели между собой много общего, но отличались от неорганических соединений. Так возник термин «Органическая химия» - раздел химии, изучающий вещества, выделенные из организмов (определение Й.Я . Берцелиуса , 1807 г.). При этом полагали, что эти вещества могут быть получены только в живых организмах благодаря «жизненной силе».

Принято считать, что органическая химия как наука появилась в 1828 г., когда Ф. Вёлер впервые получил органическое вещество - мочевину - в результате упаривания водного раствора неорганического вещества - цианата аммония (NH 4 OCN). Дальнейшие экспериментальные работы продемонстрировали неоспоримые аргументы несосто-ятельности теории «жизненной силы». Так, например, А. Кольбе синтезировал уксусную кислоту, М. Бертло получил метан из H 2 S и CS 2 , а А.М. Бутлеров синтезировал сахарис-тые вещества из формалина.

В середине 19 в. продолжается бурное развитие синтетической органической хи-мии, создаются первые промышленные производства органических веществ (А. Гофман, У. Перкин-старший - синтетические красители, фуксин, цианиновые и азакрасители). Усовершенствование открытого Н.Н. Зининым (1842 г.) способа синтеза анилина послужило основой для создания анилинокрасочной промышленности. В лаборатории А. Байера были синтезированы природные красители - индиго, ализарин, индигоидные, ксантеновые и антрахиноновые.

Важным этапом в развитии теоретической органической химии стала разработка Ф.А. Кекуле теории валент-ности в 1857 г., а также классической теории химического строения А.М . Бутлеровым в 1861 г., согласно которой атомы в молекулах соединяются в соответствии с их валентностью, химические и физические свойства соединений определяются природой и числом входящих в них атомов, а также типом связей и взаимным влиянием непосредственно несвязанных атомов. В 1865 г. Ф . Кекуле предложил структурную форму-лу бензола, что стало одним из важнейших открытий в органической химии. В.В. Марковников и А.М. Зайцев сформулировали ряд правил, впервые связавших направление органических реакций со строением вступающих в них веществ. В 1875 г. Вант-Гофф и Ле Бель предложили тетраэдрическую модель атома углерода, по которой валентности углерода направлены к вершинам тетраэдра, в центре которого размещён атом углерода. На основе этой модели, в сочетании с экспериментальными исследованиями И. Вислиценуса (!873 г.), показавшего идентичность структурных формул (+)-молочной кислоты (из кислого молока) и (±)-молочной кислоты, возникла стереохимия - наука о трёхмерной ориентации атомов в молекулах, которая предсказывала в случае наличия 4 различных заместителей при атоме углерода (хиральные структуры) возможность существования пространственно-зеркальных изомеров (антиподов или энантиомеров).

В 1917 г. Льюис предложил рассматривать химическую связь с помощью электронных пар.

В 1931 г. Хюккель применил квантовую теорию для объяснения свойств небензоидных ароматических систем, чем основал новое направление в органической химии - квантовую химию. Это послужило толчком для дальнейшего интенсивного развития квантовохимических методов, в частности метода молекулярных орбиталей. Этап проникновения орбитальных представлений в органическую химию открыла теория резонанса Л. Полинга (1931-1933 г.г.) и далее работы К. Фукуи, Р. Вудворда и Р. Хофмана о роли граничных орбиталей в определении направления химических реакций.

Середина 20 в. характеризуется особенно бурным развитием органического синтеза. Это определялось открытием основополагающих процессов, таких как получе-ние олефинов с использованием илидов (Г. Виттиг , 1954 г.), диеновый синтез (О. Дильс и К. Альдер , 1928 г.), гидроборирование непредельных соединений (Г. Браун , 1959 г.), синтез нуклеотидов и синтез гена (А. Тодд , Х. Корана ). Успехи в химии метало-органических соединений во многом обязаны работам А.Н. Несмеянова и Г.А. Разуваева . В 1951 г. был осуществлен синтез ферроцена, установление «сэндвичевой» структуры которого Р. Вудвордом и Дж. Уилкинсоном положило начало химии металлоценовых соединений и вообще органической химии переходных металлов.

В 20-30 г.г. А.Е. Арбузов создает основы химии фосфорорганических соединений, что впоследствии привело к открытию новых типов физиологически активных соединений, Комплексонов и др.

В 60-80 г.г. Ч. Педерсен , Д. Крам и Ж.М. Лен разрабатывают химию краун-эфиров, криптандов и других родственных структур, способных образовывать прочные молеку-ляр-ные комплексы, и тем самым подходят к важнейшей проблеме «молекулярного узнава-ния».

Современная органическая химия продолжает своё бурное развитие. В практику органического синтеза вводятся новые реагенты, принципиально новые синтетические методы и приемы, новые катализаторы, синтезируются неизвестные ранее органические структуры. Постоянно ведется поиск органических новых биологически активных соединений. Еще многие проблемы органической химии ждут своего решения, например, детальное установление взаимосвязи структура - свойства (в том числе, биологическая активность), установление строения и стереонаправленный синтез сложных природных соединений, разработка новых регио- и стереоселективных синтетических методов, поиск новых универсальных реагентов и катализаторов.

Интерес мирового сообщества к развитию органической химии ярко проде-мон-стрирован вручением Нобелевской премии по химии 2010 г. Р. Хеку, А. Судзуки и Э. Нэгиси за работы по применению палладиевых катализаторов в органическом синтезе для формирования связей углерод - углерод.

Классификация органических соединений

В основе классификации лежит структура органических соединений. Основа описания структуры - структурная формула.

Основные классы органических соединений

Углеводороды - соединения, состоящие только из углерода и водорода. Они в свою очередь делятся на:

Насыщенные - содержат только одинарные (σ-связи) и не содержат кратные связи;

Ненасыщенные - имеют в своём составе хотя бы одну двойную (π-связь) и/или тройную связь;

С открытой цепью (алициклические);

С замкнутой цепью (циклические) - содержат цикл

К ним относятся алканы, алкены, алкины, диены, циклоалканы, арены

Соединения с гетероатомами в функциональных группах - соединения, в которых углеродный радикал R связан с функциональной группой. Такие соединения классифицируют по характеру функциональной группы:

Спирт, фенолы (содержат гидроксильную группу ОН)

Простые эфиры (содержат группировку R-O-R или R-O-R

Карбонильные соединения (сожержат группировку RR"C=O), к ним относятся альдегиды, кетоны, хиноны.

Соединения, содержащие карбоксильную группу (СООН или СООR), к ним относятся карбоновые кислоты, сложные эфиры

Элемент- и металлорганические соединения

Гетероциклические соединения - содержат гетероатомы в составе цикла. Различаются по характеру цикла (насыщенный, ароматический), по числу атомов в цикле (трех-, четырёх-, пяти-, шестичленные циклы и т.д.), по природе гетероатома, по количеству гетероатомов в цикле. Это определяет огромное разнообразие известных и ежегодно синтезируемых соединений этого класса. Химия гетероциклов представляет собой одну из наиболее увлекательных и важных областей органической химии. Достаточно сказать, что более 60% лекарственных препаратов синтетического и природного происхождения относятся к различным классам гетероциклических соединений.

Природные соединения - соединения, как правило, достаточно сложного строения, зачастую принадлежащие сразу к нескольким классам органических соединений. Среди них можно выделить: аминокислоты, белки , углеводы , алкалоиды , терпены и др.

Полимеры - вещества с очень большой молекулярной массой, состоящие из периодически повторяющихся фрагментов - мономеров.

Строение органических соединений

Органические молекулы в основном образованы ковалентными неполярными связями С-С, или ковалентными полярными связями типа С-О, C-N, C-Hal. Полярность объясняется смещением электронной плотности в сторону более электроотрицательного атома. Для описания строения органических соединений химики используют язык структурных формул молекул, в которых связи между отдельными атомами обозначаются с помощью одного (простая, или одинарная связь), двух (двойная) или трёх (тройная) валентных штрихов. Понятие валентного штриха, которое не потеряло своего значения и по сей день, ввел в органическую химию А. Купер в 1858 г

Очень существенным для понимания строения органических соединений является понятие о гибридизации атомов углерода. Атом углерода в основном состоянии имеет электронную конфигурацию 1s 2 2s 2 2p 2 , на основе которой невозможно объяснить присущую углероду в его соединениях валентность 4 и существование 4 идентичных связей в алканах, направленных к вершинам тетраэдра. В рамках метода валентных связей это противоречие разрешается введением понятия о гибридизации. При возбуждении осуществляется s p переход электрона и последующая, так называемая, sp- гибридизация, причем энергия гибридизованных орбиталей является промежуточной между энергиями s - и p -орбиталей. При образовании связей в алканах три р -электрона взаимодействуют с одним s -электроном (sp 3 -гибридизация) и возникают 4 одинаковые орбитали, расположенные под тетраэдрическими углами (109 о 28") друг к другу. Атомы углерода в алкенах находятся в sp 2 -гибридном состоянии: у каждого атома углерода имеют три одинаковые орбитали, лежащие в одной плоскости под углом 120 о друг к другу (sp 2 -орбитали), а четвертая (р -орбиталь) перпендикулярна этой плоскости. Перекрывание р -орбиталей двух атомов углерода образует двойную (π) связь. Атомы углерода, несущие тройную связь находятся в sp -гибридном состоянии.

Особенности органических реакций

В неорганических реакциях обычно участвуют ионы, такие реакции проходят быстро и до конца при комнатной температуре. В органических реакциях часто происходят разрывы ковалентных связей с образованием новых. Как правило, эти процессы требуют особых условий: определённой температуры, времени реакции, определенных растворителей, и часто наличия катализатора. Обычно протекает не одна, а сразу несколько реакций, Поэтому при изо-бра-жении органических реакций используют не уравнения, а схемы без расчёта сте-хио-метрии. Выходы целевых веществ в органических реакциях зачастую не превышают 50%, а выделение их из реакционной смеси и очистка требуют специфических методов и приёмов. Для очистки твердых веществ, как правило, используют перекристаллизацию из специально подобранных растворителей. Жидкие вещества очищают перегонкой при атмосферном давлении или в вакууме (в зависимости от температуры кипения). Для контролем за ходом реакций, разделения сложных реакционных смесей прибегают к различным видам хроматографии [тонкослойная хроматография (ТСХ), препаративная высокоэффективная жидкостная хроматография (ВЭЖХ) и др.].

Реакции могут протекать очень сложно и в несколько стадий. В качестве промежуточных соединений могут возникать радикалы R·, карбкатионы R + , карбанионы R - , карбены:СХ 2 , катион-радикалы, анион-радикалы и другие активные и нестабильные частицы, обычно живущие доли секунды. Подробное описание всех превращений, происходящих на молекулярном уровне во время реакции, называется механизмом реакции . По характеру разрыва и образования связей различают радикальные (гомолитические) и ионные (гетеролитические) про-цессы. По типам превращений различают цепные радикальные реакции, реакции нуклеофильного (алифатического и ароматического) замещения, реакции элими-ни-ро-вания, электрофильного присоединения, электрофильного замещения, конденсации, циклизации, процессы перегруппировок и др. Реакции классифицируют также по способам их инициирования (возбуждения), их кинетическому порядку (моно-молекулярные, бимолекулярные и др.).

Определение структуры органических соединений

За всё время существования органической химии как науки важнейшей задачей было определить структуру органических соединений. Это значит узнать, какие атомы входят в состав структуры, в каком порядке и каким образом эти атомы связаны между собой и как расположены в пространстве.

Существует несколько методов решения этих задач.

  • Элементный анализ заключается в том, что вещество разлагают на более простые молекулы, по количеству которых можно определить количество атомов, входящих в состав соединения. Этот метод не дает возможности установить порядок связей между атомами. Часто используется лишь для подтверждения предложенной структуры.
  • Инфракрасная спектроскопия (ИК спектроскопия) и спектроскопия комбинационного рассеяния (спектроскопия КР). Метод основан на том, что вещество взаимодействует с электромагнитным излучением (светом) инфра-крас-ного диапазона (в ИК спектроскопии наблюдают поглощение, в КР спектроскопии - рассеяние излучения). Этот свет при поглощении возбуждает коле-бательные и вращательные уровни молекул. Опорными данными служат число, частота и интен-сивность колебаний молекулы, связанных с изменением дипольного момента (ИК) или поляризуемости (КР). Метод позволяет установить наличие функ-циональных групп, а также часто используется для подтверждения иден-тичности вещества с некоторым уже известным веществом путём сравнения их спектров.
  • Масс-спектрометрия . Вещество при определённых условиях (электронный удар, химическая ионизация и др.) превращается в ионы без потери атомов (моле-кулярные ионы) и с потерей (осколочные, фрагментарные ионы). Метод позволяет оп-ре-делить молекулярную массу вещества, его изотопный состав, иногда наличие функциональных групп. Характер фрагментации позволяет сделать некоторые вы-во-ды об особенностях строения и воссоздать структуру исследуемого соеди-нения.
  • Метод ядерного магнитного резонанса (ЯМР) основан на взаимодействии ядер, обладающих собственным магнитным моментом (спином) и помещенных во внешнее постоянное магнитное поле (переориентация спина), с переменным электромагнитным излучением радиочастотного диапазона. ЯМР представляет собой один из самых главных и информативных методов определения химической структуры. Метод используют также для изучения пространственного строения и динамики молекул. В зависимости от ядер, взаимодействующих с излучением различают, например, метод протонного резонанса ПМР, ЯМР 1 Н), позволяющий определять положение атомов водорода в молекуле. Метод ЯМР 19 F позволяет определять наличие и положение атомов фтора. Метод ЯМР 31 Р дает информацию о наличии, валентном состоянии и положении атомов фосфора в молекуле. Метод ЯМР 13 С позволяет определять число и типы углеродных атомов, он используется для изучения углеродного скелета молекулы. В отличие от первых трёх в последнем методе используется неосновной изотоп элемента, поскольку ядро основного изотопа 12 С имеет нулевой спин и не может наблюдаться методом ЯМР.
  • Метод ультрафиолетовой спектроскопии (УФ спектроскопия) или спектроскопия электронных переходов. Метод основан на поглощении электро-магнитного излучения ультрафиолетовой и видимой области спектра при переходе электронов в молекуле с верхних заполненных энергетических уровней на вакант-ные (возбуждение молекулы). Чаще всего используется для определения наличия и характеристики сопряженных π-систем.
  • Методы аналитической химии позволяют определять наличие некоторых функциональных групп по специфическим химическим (качественным) реакциям, факт протекания которых можно фиксировать визуально (например, появление или изменение окраски) или с помощью других методов. Помимо химических методов анализа в органической химии все большее применение находят инструментальные аналитические методы, такие как хроматография (тонкослойная, газовая, жид-костная). Почетное место среди них занимает хроматомасс-спектромерия, позво-ляющая не только оценить степень чистоты полученных соединений, но и полу-чить масс-спектральную информацию о компонентах сложных смесей.
  • Методы исследования стереохимии органических соединений . С начала 80 г.г. стала очевидной целесообразность разработки нового направления в фармакологии и фармации, связанного с созданием энантиомерно чистых лекарственных средств с оптимальным соотношением терапевтической эффективности и безопасности. В настоящее время примерно 15% всех синтезируемых фармпрепаратов представ-лены чистыми энантиомерами. Отражением данной тенденции стало появление в научной литературе последних лет термина chiral switch , что в русском переводе означает ”переключение на хиральные молекулы”. В связи с этим особое значение в органической химии приобретают методы установления абсолютной конфи-гурации хиральных органических молекул и определения их оптической чистоты. Основным методом определения абсолютной конфигурации следует считать рентгеноструктурный анализ (РСА), а оптической чистоты - хроматографию на колонках с неподвижной хиральной фазой и метод ЯМР с использованием специальных дополнительных хиральных реагентов.

Связь органической химии с химической промышленностью

Основной метод органической химии - синтез - тесно связывает органическую химию с химической промышленностью. На основе методов и разработок синтетической органической химии возник малотоннажный (тонкий) органический синтез, включающий производство лекарств, витаминов, ферментов , феромонов, жидких кристаллов, орга-нических полупроводников, солнечных батарей и др. Развитие крупнотоннажного (основ-ного) органического синтеза также базируется на достижениях органической химии. К основному органическому синтезу относится производство искусственных волокон, пластмасс, переработка нефти, газа и каменноугольного сырья.

Рекомендуемая литература

  • Г.В. Быков, История органической химии , М.: Мир, 1976 (http://gen.lib/rus.ec/get?md5=29a9a3f2bdc78b44ad0bad2d9ab87b87)
  • Дж. Марч, Органическая химия: реакции, механизмы и структура , в 4 томах, М.: Мир, 1987
  • Ф. Кери, Р. Сандберг, Углубленный курс органической химии , в 2 томах, М.: Химия, 1981
  • О.А. Реутов, А.Л. Курц, К.П. Бутин, Органическая химия , в 4 частях, М.: « Бином, Лаборатория знаний», 1999-2004. (http://edu.prometey.org./library/autor/7883.html)
  • Химическая энциклопедия , под ред. Кнунянца, М.: «Большая Российская энциклопедия», 1992.

Точный молекулярный состав организмов до настоящего времени полностью не известен. Это объясняется невероятным числом и сложностью разных молекул даже в одноклеточном организме, не говоря уже о сложных многоклеточных системах. Такое многообразие обусловлено свойствами атомов углерода и их способностью к структурным изменениям. Подавляющая часть молекул клетки, исключая воду, относится к углеродным соединениям, называемым органическими. Углерод, имея уникальные химические свойства, фундаментальные для жизни, составляет ее химическую основу. Благодаря малому размеру и наличию на внешней оболочке четырех электронов атом углерода может образовать четыре прочные ковалентные связи с другими атомами. Наиболее важное значение имеет способность атомов углерода соединяться друг с другом, образуя цепи, кольца и, в конечном итоге, скелет больших и сложных органических молекул. К тому же углерод легко образует ковалентные связи с другими биогенными элементами (обычно с Н, N, Р, О и S). Именно этим объясняется астрономическое число разнообразных органических соединений, обеспечивающих существование живых организмов во всех их проявлениях. Разнообразие это проявляется в структуре и размерах молекул, в их химических свойствах, в степени насыщенности углеродного скелета, в различной форме молекул, определяемой углами внутримолекулярных связей.

Среди известных органических веществ, обнаруженных в живых организмах, можно выделить малые биологические молекулы (аминокислоты, гаицерол, холин, азотистые основания и т. д.) и биополимеры. Биологические полимеры это высокомолекулярные (молекулярная масса 10 3 10 9 далыпон) органические соединения, макромолекулы которых состоят из большого числа повторяющихся звеньев — мономеров. К биополимерам относятся белки, нуклеиновые кислоты, полисахариды (крахмал, гликоген, целлюлоза, гем и целлюлоза, пектиновые вещества, хитин и др.)- Мономерами для них служат соответственно аминокислоты, нуклеотиды и моносахариды.

Биополимеры составляют около 90% сухой массы клетки, при этом у животных количественно преобладают белки, у растений — полисахариды.

Источник : Н.А. Лемеза Л.В.Камлюк Н.Д. Лисов "Пособие по биологии для поступающих в ВУЗы"

ЛИПИДЫ_ в химическом отношении большинство липидов представляет собой сложные эфиры высших карбоновых кислот и ряда спиртов. Наиболее известны среди них жиры. Каждая молекула жира образована молекулой трехатомного спирта глицерола и присоединенными к ней эфирными связями трех молекул высших карбоновых кислот. Согласно принятой номенклатуре, жиры называют триацилглщеролами.
ФУНКЦИИ
1)структурную,
2)защитную,
3)термо- гидроизоляционную,
4)синтетическую (составная часть многих гормонов) ,
5)энергетическую,
6)запасающую функции.
Липиды образуют термоизолирующий слой в организме, входят в состав секретов сальных желез.

БЕЛКИ_молекулы белков имеют большие размеры, поэтому их называют макромолекулами. Кроме углерода, кислорода, водорода и азота, в состав белков могут входить сера, фосфор и железо. Белки отличаются друг от друга числом (от ста до нескольких тысяч), составом и последовательностью мономеров. Мономерами белков являются аминокислоты.Уникальность белка определяется последовательностью соединения определенных аминокислот. Молекулы белков могут образовывать первичную, вторичную, третичную и четвертичную структуру.
Белки выполняют в клетке множество функций: ферментативную, транспортную, защитную и др.

Нуклеиновые кислоты
/ \
РНК ДНК
Молекулы нуклеиновых кислот - длинные полимерные цепочки, мономерами которых являются нуклеотиды. Каждый нуклеотид состоит из азотистого основания, углевода, остатков фосфорной кислоты (одного из трех).
ФУНКЦИИ
1)каталитическая
2)строительная
3)транспортная
4)защитная
5)двигательная
6)энергетическая
7)гормональная
8)рецепторная

УГЛЕВОДЫ_вещества с общей формулой Cn(H2O)m, где n и m могут иметь разные значения.Они представляют собой первичные продукты фотосинтеза и исходные продукты биосинтеза других органических веществ в растениях. Углеводы бывают 3-х разновидностей, являются биополимерами, бывают гомополисахариды (крахмал, хитин, гликоген, целлюлоза), гетерополисахариды (пектин, муреин,гепарин)
ФУНКЦИИ:
1.энергетическая (при расщеплении 1г. углевода = 17,6 кДж энергии)
2.структурная (оболочки растительных клеток)
3.запасающая (запасные питательные вещества - крахмал, гликоген, целлюлоза) (органические кислоты, спирты, аминокислоты и др.), а также содержатся в клетках всех других организмов.

Ответить

Ответить

Ответить


Другие вопросы из категории

1)назовите функции живого вещества в биогеоценозе. 2)какие компоненты считаются основными структурными единицами биогеоценозов? 3)какова р

оль биогеоценотического уровня жизни в существовании живой материи?

Читайте также

ПОМОГИТЕ пожалуйста!!! Установите соответствие между органоидами клетки,их особенностями строения и функциями.

ОРГАНОИДЫ КЛЕТКИ:A)Клеточная мембрана; Б)Митохондрия.

ОСОБЕННОСТИ СТРОЕНИЯ И ФУНКЦИИ ОРГАНОИДОВ: 1)Синтез АТФ; 2)Имеются кристы; 3)Осуществляет фаго-и пиноцитоз; 4)Хранит наследственную информацию; 5)Способна к активному транспорту ионов; 6) Полупроницаема для ионов.

Тест « Химический состав клетки». 1 вариант.

I. Наиболее распространенными в клетках живых организмов элементами являются:
a) N, О, H, S; б) С, Н, N, О; в) S, Fe, О, С; г) О, S, Н, Fe

в) только белков;


г) только воды, углеводов, белков и нуклеиновых кислот.
4. На каком уровне организации не наблюдается различие между органическим и неорганическим миром?
а) атомном, б) молекулярном, в) клеточном. 5.Воды содержится больше в клетках: а)эмбриона, б) молодого человека, в) старика.
6. Вода - основа жизни:
а) она может находиться в трех состояниях (жидком, твердом, газообразном);
б) является растворителем, обеспечивающим как приток веществ в клетку, так и удаление из неё продуктов обмена;
7. Вещества, хорошо растворимые в воде, называются: а)гидрофильные, б) гидрофобные, в) амфифильные.
8. К гидрофобным соединениям клетки относятся:
а) липиды и аминокислоты;
б) липиды;


а) крахмал; б) дезоксирибоза; в) рибоза; г) глюкоза.
а) запасающая и структурная;

г) структурная и защитная.
12.Белки - это биополимеры мономерами, которого являются: а) нуклеотиды; б)аминокислоты; в) азотистые основания. 13. Аминокислоты различаются:
а)аминогруппой, б) карбоксильной группой; в)радикалом.
а) только аминокислоты

г) аминокислоты и иногда молекулы углеводов
13. Структура молекулы белка, которую определяет последовательность аминокислотных остатков: а) первичная; б) вторичная; в) третичная; г) четвертичная. 13. Вторичная структура белка связана с:
б) пространственной конфигурацией полипептидной цепи
в) числом и последовательностью аминокислотных остатков
г) пространственной конфигурацией спирализованной полипептидной цепи А 14. 14.Вторичная структура белка поддерживается связями:
а) только пептидными;
б) только водородными;
г) водородными и пептидными;
15. Наименее прочными структурными белка является:
а) первичная и вторичная
б) вторичная и троичная
в) третичная и четвертичная
г) четвертичная и вторичная
16. Белок каталаза выполняет в клетке функцию;
а) сократительную;
б) транспортную;
в) структурную;
г) католическую.
17. При неполной денатурации белка первой разрушается структура: а) первичная;
б)вторичная;
в) только третичная;

а) нуклеозиды;
б) нуклеотиды;
в) аминокислоты;

б) только азотистых оснований и остатков сахаров;
в) только азотистых оснований и остатков фосфорных кислот;
г) остатков фосфорных кислот, сахаров и азотистых оснований.
20. Состав нуклеотидов ДНК отличается друг от друга содержанием:
а) только сахаров;

г) сахаров, азотистых оснований и остатков фосфорных кислот.
21. Нуклеотиды ДНК содержат азотистые основания:



2) только азотистых оснований и остатков сахаров;
3) только азотистых оснований и остатков фосфорных кислот;
4) остатков фосфорных кислот, сахаров и азотистых оснований.
23.Молекулы, при окислении которых освобождается много энергии: а) полисахариды; б) жиры; в) белки; г) моносахариды.


Белки - сложные органические вещества,.....
Они состоят из мономеров-......
Аминокислоты располагаются в молекуле белка в определенной последовательности, чем определяется его....структура. «
Главная биологическая функция белков в клетке
Вещества, являющиеся продуктами реакции соединения глицерина и жидких жирных кислот-....
Мономер молекулы крахмала -.....
Пятиуглеродный сахар, входящий в состав молекулы ДНК -.....

Задания со свободным ответом.
1. О чем свидетельствует сходство строения клеток организмов всех царств живой природы?
2. Почему белки стоят на первом месте по своему значению в клетке? З.Что лежит в основе способности молекулы ДНК самоудваиваться?

I. Наиболее распространенными в клетках

живых организмов элементами являются:
a) N, О, H, S; б) С, Н, N, О; в) S, Fe, О, С; г) О, S,
Н, Fe
2. Азот как элемент входит в состав:
а) только белков и нуклеиновых кислот;
б) нуклеиновых кислот, белков и АТФ;
в) только белков;
г) белков, нуклеиновых кислот и липидов;
3. Водород как элемент входит в состав:
а) только воды и некоторых белков
б) только воды, углеводов и липидов
в) всех органических соединений клетки
г) только воды, углеводов, белков и
нуклеиновых кислот.
4. На каком уровне организации не
наблюдается различие между органическим и
неорганическим миром?
а) атомном, б) молекулярном, в) клеточном.
5.Воды содержится больше в клетках: а)
эмбриона, б) молодого человека, в) старика.
6. Вода - основа жизни:
а) она может находиться в трех состояниях
(жидком, твердом, газообразном);
б) является растворителем, обеспечивающим
как приток веществ в клетку, так и удаление
из неё продуктов обмена;
в) охлаждает поверхность при испарении.
7. Вещества, хорошо растворимые в воде,
называются: а)гидрофильные, б) гидрофобные,
в) амфифильные.
8. К гидрофобным соединениям клетки
относятся:
а) липиды и аминокислоты;
б) липиды;
в) липиды и минеральные соли;
г) аминокислоты и минеральные соли.
9. К углеводам моносахаридам относятся:
а) крахмал; б) гликоген; в) глюкоза; г) мальтоза.
10. К углеводам полисахаридам относятся:
а) крахмал; б) дезоксирибоза; в) рибоза; г)
глюкоза.
II. Основные функции жиров в клетке:
а) запасающая и структурная;
б) структурная и энергетическая;
в) энергетическая и запасающая;
г) структурная и защитная.
12.Белки - это биополимеры мономерами,
которого являются: а) нуклеотиды; б)
аминокислоты; в) азотистые основания. 13.
Аминокислоты различаются:
а)аминогруппой, б) карбоксильной группой; в)
радикалом.
12. В состав молекул белков входят:
а) только аминокислоты
б) аминокислоты и иногда ионы металлов
в) аминокислоты и иногда молекулы липидов
г) аминокислоты и иногда молекулы
углеводов
13. Структура молекулы белка, которую
определяет последовательность
аминокислотных остатков: а) первичная; б)
вторичная; в) третичная; г) четвертичная. 13.
Вторичная структура белка связана с:
а) спирализацией полипептидной цепи
б) пространственной конфигурацией
полипептидной цепи
в) числом и последовательностью
аминокислотных остатков
г) пространственной конфигурацией
спирализованной полипептидной цепи А 14.
14.Вторичная структура белка поддерживается
связями:
а) только пептидными;
б) только водородными;
в) дисульфидные и водородными;
г) водородными и пептидными;
15. Наименее прочными структурными белка
является:
а) первичная и вторичная
б) вторичная и троичная
в) третичная и четвертичная
г) четвертичная и вторичная
16. Белок каталаза выполняет в клетке
функцию;
а) сократительную;
б) транспортную;
в) структурную;
г) католическую.
17. При неполной денатурации белка первой
разрушается структура: а) первичная;
б)вторичная;
в) только третичная;
г) четвертичная, иногда третичная.
18. Мономерами молекул ДНК являются:
а) нуклеозиды;
б) нуклеотиды;
в) аминокислоты;
19 Нуклеотиды ДНК состоят из:
а) только азотистых оснований;
б) только азотистых оснований и остатков
сахаров;
в) только азотистых оснований и остатков
фосфорных кислот;
г) остатков фосфорных кислот, сахаров и
азотистых оснований.
20. Состав нуклеотидов ДНК отличается друг
от друга содержанием:
а) только сахаров;
б) только азотистых оснований;
в) сахаров и азотистых оснований;
г) сахаров, азотистых оснований и остатков
фосфорных кислот.
21. Нуклеотиды ДНК содержат азотистые
основания:
а) цитозин, урацил, аденин, тимин;
б) тимин, цитозин, гуанин, аденин;
в) тимин, урацил, аденин, гуанин;
г) урацил, цитозин, аденин, тимин.
22. Нуклеотиды РНК состоят из:
1) только азотистых оснований;
2) только азотистых оснований и остатков
сахаров;
3) только азотистых оснований и остатков
фосфорных кислот;
4) остатков фосфорных кислот, сахаров и
азотистых оснований.
23.Молекулы, при окислении которых
освобождается много энергии: а)
полисахариды; б) жиры; в) белки; г)
моносахариды.
Вставьте в текст пропущенные слова.
Белки - сложные органические вещества,.....биология ". Если ваш вопрос отличается или ответы не подходят, вы можете задать новый вопрос, воспользовавшись кнопкой в верхней части сайта.

Органические и неорганические соединения.

Органические соединения, органические вещества - класс химических соединений, в состав которых входит углерод.

Исключение составляют несколько наиболее простых соединений углерода (например, карбиды, карбонаты, оксиды углерода, угольную кислоту, цианиды). Эти соединения считают неорганическими.

Органические соединения получили своё название из-за того, что в природе они встречаются почти исключительно в организмах животных и растений, принимают участие в жизненных процессах или же являются продуктами жизнедеятельности или распада организмов.

В отличие от органических соединений, такие вещества, как песок, глина, различные минералы, вода, оксиды углерода, угольная кислота и её соли и прочие вещества, относящиеся к «неживой природе», получили название неорганических или минеральных веществ.

Как углерод, входя в состав всех органических веществ, является важнейшим элементом животного и растительного царств, так кремний – главный элемент царства минералов и горных пород.

История открытий органических соединений.

Долгое время считалось, что углеродосодержащие вещества, образующиеся в организмах, в принципе невозможно получать путём синтеза из неорганических соединений.

Образование органических веществ приписывалось влиянию особой, недоступной познанию «жизненной силы», действующей только в живых организмах, и обуславливающих специфику органических веществ.

Это учение получило название витализма (от латинского vis vitalis – жизненная сила).

Концепция виталистов была наиболее полно сформулирована одним из самых авторитетных химиков первой половины XIX века шведским учёным Берцелиусом.

В 1824 г. немецкий физик Велер, ученик Берцелиуса, впервые получил из неорганического вещества дициана (CN)2 при нагревании его с водой щавелевую кислоту (COOH)2 – органическое соединение, которое до тех пор добывалось только из растений.

В 1828 г. Велер осуществил первый синтез вещества животного происхождения: нагреванием неорганического соединения цианата амония NH4CNO получил мочевину (карбамид) (NH2)2CO. До этого момента карбамид выделяли лишь из мочи.

Вскоре были осуществлены в лабораторных условиях синтезы и других органических веществ:

· В 1845 г. в Германии Г. Кольбе синтезировал уксусную кислоту,

· В 1854 г. во Франции М. Бертло синтетическим путём получил жир,

· В 1861 г. в России А.М. Бутлеров осуществил синтез сахаристого вещества.

В настоящее время путём синтеза получают множество органических соединений. Более того, - оказалось, что многие органические вещества гораздо проще и дешевле получить синтетически, чем выделять из природных продуктов.

Наибольшим успехом химии 50-60-х годов XX века явился первый синтез простых белков – гормона инсулина и фермента рибонуклеазы.

Таким образом, доказана возможность синтетического получения даже белков – наиболее сложных органических веществ, являющихся непременными участниками жизненных процессов.

Особенность строения органических соединений.

Органические соединения имеют важную особенность. Она состоит в том, что атомы углерода обладают уникальной способностью образовывать длинные цепочки и присоединять к себе многие другие атомы, например, атомы водорода, кислорода, азота, серы, фосфора.

Причём, образованные таким образом молекулы, являются вполне устойчивыми, тогда как молекулы с подобным же цепеобразным накоплением атомов других элементов в подавляющем большинстве случаев очень непрочны.

Например, для кислорода максимальная известная длина цепи равна двум атомам, а содержащие ее соединения (перекись водорода и ее производные) малоустойчивы.

Длинные цепи углеродных атомов – причина огромного разнообразия органических соединений. По этой причине существуют неисчислимые комбинации сочетаний атомов, образующих молекулы таких соединений.

Так общее число известных неорганических соединений на сегодняшний день составляет несколько десятков тысяч, а число органических соединений уже перевалило за два миллиона.

Это обстоятельство заставляет выделить детальное изучение химии углерода в самостоятельную область, называемую органической химией.

Органическая химия

Структурная изомерия и структурные формулы

Структурная изомерия

Среди органических соединений распространено явление изомерии. Имеется множество соединений углерода, обладающих одинаковым качественным и количественным составом и одинаковым молекулярным весом, но совершенно различными физическими, а зачастую и химическими свойствами.

Например, состав С 2 Н 6 О и, соответственно молекулярный вес 46,07 имеют два различных изомерных органических вещества:

1. этиловый спирт – жидкость, кипящая при 78,4 С, смешивающаяся с водой в любых соотношениях и

2. диметиловый эфир – газ, почти не растворимый в воде и существенно отличающийся от этилового спирта по химическим свойствам.

Другой пример:

Формула С 2 Н 4 О 2 может соответствовать как уксусной кислоте, так и гликолевому альдегиду.

Структурные формулы

Для того чтобы избежать путаницы для записи формул таких веществ используют структурные формулы.

Структурная формула - это разновидность химической формулы, графически описывающая расположение и порядок связи атомов в соединении, выраженное на плоскости. Связи в структурных формулах обозначаются валентными черточками.

Так, структурные формулы веществ, приведённых в качестве примеров выше, будут выглядеть следующим образом:

Подобное графическое изображение структурных формул довольно сложно и требует времени. Часто формулы органических соединений пишут таким образом, чтобы они давали представление о длине углеводородной цепи и о присутствующих в молекуле функциональных группах.

Выделение фунуциональных групп важно потому, что именно они во многом определяют химические свойства соединения Так, формулы вышеприведённых веществ могут быть записаны следующим образом:

1. СН 3 – О – СН 3 – диметиловый эфир,

2. С 2 Н 5 – ОН – этиловый спирт (ОН - гидроксильная группа),

3. СН 3 – СООН уксусная кислота (СООН - карбоксильная группа),

4. СН 2 ОН – СНО – гликолевый альдегид (СНО - альдегидная группа).

Внешняя электронная оболочка атома углерода состоит из четырех электронов, с помощью которых он образует четыре ковалентных связи с другими атомами. С помощью простых (одинарных) ковалентных связей атом углерода может присоединить к себе четыре других атома.

Но атомы могут связываться не только одинарной, но и двойной или тройной ковалентной связьюсвязью.

В структурных формулах такие связи обозначаются двойными или тройными чёрточками. Примерами соединений с двойными и тройными связями являются этиленС 2 Н 4 и ацетилен С 2 Н 2 :

Углерод. Особенности строения. Свойства.

Строение углерода

Углерод является шестым элементом периодической системы Менделеева. Его атомный вес равен 12.

Углерод находится во втором периоде системы Менделеева и в четвёртой группе этой системы.

Номер периода сообщает нам, что шесть электронов углерода располагаются на двух энергетических уровнях.

А четвёртый номер группы говорит, что на внешнем энергетическом уровне у углерода находится четыре электрона. Два из них это спаренные s -электроны, а два другие – не спаренные р -электроны.

Структура внешнего электронного слоя атома углерода может быть выражена следующими схемами:

Каждая ячейка вэтих схемах означает отдельную электронную орбиталь, стрелка – элетрон, находящийся на орбитали. Две стрелки внутри одной ячейки – это два электрона, находящиеся на одной орбитали, но имеющие противоположно направленные спины.

При возбуждении атома (при сообщени ему энергии) один из спаренных S -электронов занимает р -орбиталь.

Возбуждённый атом углерода может учавствовать в образовании четырёх ковалентных связей. Поэтому в подавляющем большинстве своих соединений углерод проявляет валентность, равную четырем.

Так, простейшее органическое соединение углеводород метан имеет состав СН 4 . Строение его может быть выражено структурной или электронной формулами:

Электронная формула показывает, что атом углерода в молекуле метана имеет устойчивую восьмиэлектронную внешнюю оболочку, а атомы водорода – устойчивую двухэлектронную оболочку.

Все четыре ковалентных связи углерода в метане (и в других подобных соединениях) равноценны и симметрично направлены в пространстве. Атом углерода находится как бы в центре тетраэдра (правильной четырёхугольной пирамиды), а четыре соединённых с ним атома (в случае метана – четыре атома водорода) в вершинах тетраэдра.