Зрительная сенсорная система. Зрительное восприятие

Отдельные части глаза (роговица, хрусталик, стекловидное тело) обладают способностью преломлять проходящие через них лучи. С точки зрения физики глаз представляет собой оптическую систему, способную собирать и преломлять лучи.

Преломляющую силу отдельных частей (линз в прибо ре) и всей оптической системы глаза измеряют в диоптриях.

Под одной диоптрией понимают преломляющую силу линзы, фокусное расстояние которой составляет 1 м. Если преломляющая сила увеличивается, фокусное расстояние уко рачивается. Отсюда следует, что линза, у которой фокусное расстояние равно 50 см, будет обладать преломляющей силой, равной 2 диоптриям (2 D).

Оптическая система глаза является весьма сложной. Достаточно указать, что только преломляющих сред имеется несколько, причем каждая среда имеет свою преломляющую силу и особенности строения. Все это крайне усложняет изучение оптической системы глаза.

Рис. Построение изображения в глазу (объяснение в тексте)

Глаз часто сравнивают с фотоаппаратом. Роль камеры играет полость глаза, затемненная сосудистой оболочкой; светочувствительным элементом является сетчатка. В камере имеется отверстие, в которое вставлена линза. Лучи света, попадая в отверстие, проходят через линзу, преломляются и падают на противоположную стенку.

Оптическая система глаза представляет собой преломляющую собирательную систему. Она преломляет проходящие через нее лучи и опять собирает их в одну точку. Таким образом возникает действительное изображение реального предмета. Однако изображение предмета на сетчатке получается обратное и уменьшенное.

Чтобы понять это явление, обратимся к схематическому глазу. Рис. дает представление о ходе лучей в глазу и получении обратного изображения предмета на сетчатке. Луч, отходящий от верхней точки предмета, обозначенной буквой а, проходя через линзу, преломляется, меняет направление и занимает на сетчатке положение нижней точки, обозначенной на рисунке а 1 Луч от нижней точки предмета в, преломляясь, падает на сетчатку как верхняя точка в 1 . Соответствующим же образом падают лучи от всех точек. Следовательно, на сетчатке получается действительное изображение предмета, но оно обратное и уменьшенное.

Так, расчеты показывают, что размер букв данной книги, если при чтении она находится на расстоянии 20 см от глаза, на сетчатке будет равен 0,2 мм. обстоятельство, что мы видим предметы не в их перевернутом изображении (вверх ногами), а в их естественном виде, вероятно, объясняется накопленным жизненным опытом.

Ребенок в первые месяцы после рождения путает верхнюю и нижнюю сторону предмета. Если такому ребенку показать горящую свечку, ребенок, стараясь схватить пламя, протянет руку не к верхнему, а к нижнему концу свечи. Контролируя в течение дальнейшей жизни показания глаза руками и другими органами чувств, человек начинает видеть предметы так, как они есть, несмотря на их обратное изображение на сетчатке.

Аккомодация глаза. Человек не может одновременно одинаково четко видеть предметы, находящиеся на разных расстояниях от глаза.

Для того чтобы хорошо видеть предмет, надо, чтобы лучи, отходящие от этого предмета, собирались на сетчатке. Только в том случае, когда лучи падают на сетчатку, мы видим ясное изображение предмета.

Приспособление глаза к получению отчетливых изображений предметов, находящихся на разных расстояниях, называется аккомодацией.

Для того чтобы в каждом случае получить четкое изобра жение, необходимо изменять расстояние между светопреломляющей линзой и задней стенкой камеры. Так устроен фотоаппарат. Чтобы получить четкое изображение на задней стенке камеры, отодвигают или приближают объектив. По такому принципу происходит аккомодация у рыб. У них хрусталик при помощи специального приспособления отодвигается или приближается к задней стенке глаза.

Рис. 2 ИЗМЕНЕНИЕ КРИВИЗНЫ ХРУСТАЛИКА ПРИ АККОМОДАЦИИ 1 - хрусталик; 2 - сумка хрусталика; 3 - ресничные отростки. Верхний рисунок - увеличение кривизны хрусталика. Ресничная связка расслаблена. Нижний рисунок - кривизна хрусталика уменьшена, ресничные связки натянуты.

Однако четкое изображение можно получить и в том случае, если изменяется преломляющая сила линзы, а это возможно при изменении ее кривизны.

По этому принципу происходит аккомодация у человека. При видении предметов, находящихся на разных расстояниях, кривизна хрусталика изменяется и благодаря этому точка, где сходятся лучи, приближается или удаляется, попадая каждый раз на сетчатку. Когда человек рассматривает близкие предметы, хрусталик делается более выпуклым, а при рассмотрении дальних предметов - более плоским.

Как же происходит изменение кривизны хрусталика? Хрусталик находится в специальной прозрачной сумке. От степени натяжения сумки зависит кривизна хрусталика. Хрусталик обладает эластичностью, поэтому, когда сумка натягивается, он становится плоским. При расслаблении же сумки хрусталик в силу своей -эластичности приобретает более выпуклую форму (рис.2). Изменение натяжения сумки происходит при помощи специальной круговой аккомодационной мышцы, к которой прикреплены связки капсулы.

При сокращении аккомодационных мышц связки сумки хрусталика ослабевают и хрусталик приобретает более выпуклую форму.

От степени сокращения этой мышцы зависит и степень изменения кривизны хрусталика.

Если находящийся на далеком расстоянии предмет постепенно приближать к глазу, то на расстоянии 65 м начинается аккомодация. По мере дальнейшего приближения предмета к глазу аккомодационные усилия возрастают и на расстоянии 10 см оказываются исчерпанными. Таким образом, точка ближнего видения будет находиться на расстоянии 10 см. С возрастом эластичность хрусталика постепенно уменьшается, а следовательно, меняется и способность к аккомодации. Ближайшая точка ясного видения у 10-летнего находится на расстоянии 7 см, у 20-летнего - на расстоянии 10 см, у 25-летнего - 12,5 см, у 35-летнего - 17 см, у 45-летнего - 33 см, у 60-летнего - 1 м, у 70-летнего - 5 м, у 75-летнего способность к аккомодации почти теряется и ближайшая точка ясного видения отодвигается в бесконечность.

Зрение - это биологический процесс, обусловливающий восприятие формы, размеров, цвета предметов, окружающих нас, ориентировку среди них. Оно возможно благодаря функции зрительного анализатора, в состав которого входит воспринимающий аппарат - глаз.

Функция зрения не только в восприятии световых лучей. Им мы пользуемся для оценки расстояния, объемности предметов, наглядного восприятия окружающей действительности.

Глаз человека — фото

В настоящее время из всех органов чувств у человека наибольшая нагрузка падает на органы зрения. Это обусловлено чтением, письмом, просмотром телепередач и других видов получения информации и работы.

Строение глаза человека

Орган зрения состоит из глазного яблока и вспомогательного аппарата, расположенных в глазнице - углублении костей лицевого черепа.

Строение глазного яблока

Глазное яблоко имеет вид шаровидного тела и состоит из трех оболочек:

  • Наружной - фиброзной;
  • средней - сосудистой;
  • внутренней - сетчатой.

Наружная фиброзная оболочка в заднем отделе образует белочную, или склеру, а спереди она переходит в проницаемую для света роговицу.

Средняя сосудистая оболочка называется так из-за того, что богата сосудами. Расположена под склерой. Передняя часть этой оболочки образует радужку , или радужную оболочку. Так ее называют из-за окраски (цвета радуги). В радужной оболочке находится зрачок - круглое отверстие, которое способно изменять величину в зависимости от интенсивности освещения посредством врожденного рефлекса. Для этого в радужке имеются мышцы, суживающие и расширяющие зрачок.

Радужка выполняет роль диафрагмы, регулирующей количество поступающего света на светочувствительный аппарат, и предохраняет его от разрушений, осуществляя привыкание органа зрения к интенсивности света и темноты. Сосудистая оболочка образует жидкость - влагу камер глаза.

Внутренняя сетчатая оболочка, или сетчатка - прилегает сзади к средней (сосудистой) оболочке. Состоит из двух листков: наружного и внутреннего. Наружный листок содержит пигмент, внутренний - светочувствительные элементы.


Сетчатая оболочка выстилает дно глаза. Если смотреть на нее со стороны зрачка, то на дне видно беловатое круглое пятно. Это место выхода зрительного нерва. Здесь нет светочувствительных элементов и поэтому не воспринимаются световые лучи, оно называется слепым пятном . Сбоку от него находится желтое пятно (макула) . Это место наибольшей остроты зрения.

Во внутреннем слое сетчатой оболочки расположены светочувствительные элементы - зрительные клетки. Их концы имеют вид палочек и колбочек. Палочки содержат зрительный пигмент - родопсин, колбочки - йодопсин. Палочки воспринимают свет в условиях сумеречного освещения, а колбочки - цвета при достаточно ярком освещении.

Последовательность прохождения света через глаз

Рассмотрим ход световых лучей через ту часть глаза, которая составляет его оптический аппарат. Вначале свет проходит через роговицу, водянистую влагу передней камеры глаза (между роговицей и зрачком), зрачок, хрусталик (в виде двояковыпуклой линзы), стекловидное тело (густой консистенции прозрачная среда) и, наконец, попадает на сетчатку.


В случаях, когда световые лучи, пройдя через оптические среды глаза, фокусируются не на сетчатке, то развиваются аномалии зрения:

  • Если впереди нее - близорукость;
  • если позади - дальнозоркость.

Для выравнивания близорукости используют двояковогнутые, а дальнозоркости - двояковыпуклые стекла очков.

Как уже отмечалось, в сетчатке расположены палочки и колбочки. При попадании на них свет вызывает раздражение: возникают сложные фотохимические, электрические, ионные и ферментативные процессы, которые обусловливают нервное возбуждение - сигнал. Он поступает по зрительному нерву в подкорковые (четверохолмие, зрительный бугор и др.) центры зрения. Потом направляется в кору затылочных долей мозга, где воспринимается в виде зрительного ощущения.

Весь комплекс нервной системы, включающий рецепторы света, зрительные нервы, центры зрения в головном мозге, составляет зрительный анализатор.

Строение вспомогательного аппарата глаза


Помимо глазного яблока к глазу относится и вспомогательный аппарат. Он состоит из век, шести мышц, двигающих глазное яблоко. Заднюю поверхность век покрывает оболочка - конъюнктива, которая частично переходит на глазное яблоко. Кроме того, к вспомогательным органам глаза относится слезный аппарат. Он состоит из слезной железы, слезных канальцев, мешка и носослезного протока.

Слезная железа выделяет секрет - слезы, содержащие лизоцим, губительно действующий на микроорганизмы. Она расположена в ямке лобной кости. Ее 5-12 канальцев открываются в щель между конъюнктивой и глазным яблоком в наружном углу глаза. Увлажнив поверхность глазного яблока, слезы оттекают к внутреннему углу глаза (к носу). Здесь они собираются в отверстия слезных канальцев, по которым попадают в слезный мешок, также расположенный у внутреннего угла глаза.

Из мешка по носослезному протоку слезы направляются в полость носа, под нижнюю раковину (поэтому порой можно заметить, как во время плача слезы текут из носа).

Гигиена зрения

Знание путей оттока слез из мест образования - слезных желез - позволяет правильно выполнять такой гигиенический навык, как - «протирание» глаз. При этом движение рук с чистой салфеткой (желательно стерильной) нужно направлять от наружного угла глаза к внутреннему, «протирать глаза в сторону носа», в сторону естественного тока слез, а не против него, способствуя, таким образом, удалению инородного тела (пыли), попавшего на поверхность глазного яблока.

Орган зрения нужно оберегать от попаданий инородных тел, повреждений. При работе, где образуются частицы, осколки материалов, стружка, следует пользоваться защитными очками.

При ухудшении зрения не медлить и обращаться к врачу-окулисту, выполнять его рекомендации, чтобы избежать дальнейшего развития болезни. Интенсивность освещения рабочего места должна зависеть от вида выполняемой работы: чем более тонкие движения выполняются, тем интенсивнее должно быть освещение. Оно не должно быть ни ярким, ни слабым, а ровно таким, которое требует наименьшего напряжения зрения и способствует эффективной работе.

Как поддерживать остроту зрения

Разработаны нормативы освещения в зависимости от назначения помещения, от рода деятельности. Количество света определяют с помощью специального прибора - люксметра. Контроль правильности освещения осуществляет медико-санитарная служба и администрация учреждений и предприятий.

Следует помнить, что особенно способствует ухудшению остроты зрения яркий свет. Поэтому нужно избегать смотреть без светозащитных очков в сторону источников яркого света как искусственных, так и естественных.

Для предотвращения ухудшения зрения в связи с высокой нагрузкой на глаза нужно выполнять определенные правила:

  • При чтении и письме необходимо равномерное достаточное освещение, от которого не развивается утомление;
  • расстояние от глаз до предмета чтения, письма или мелких предметов, с которыми вы заняты, должно быть около 30-35см;
  • предметы, с которыми вы работаете, нужно размещать удобно для глаз;
  • телепередачи смотреть не ближе 1,5 метра от экрана. При этом обязательно нужно подсвечивание помещения за счет скрытого источника света.

Немаловажное значение для поддержания нормального зрения имеет витаминизированное питание вообще и особенно витамин А, которого много в животных продуктах, в моркови, тыкве.

Размеренный образ жизни, включающий в себя правильное чередование режима труда и отдыха, питания, исключающий вредные привычки, в том числе курение и употребление алкогольных напитков, в немалой степени способствует сохранению зрения и здоровья вообще.

Гигиенические требования к сохранению органа зрения настолько обширны и разнообразны, что приведенными выше нельзя ограничиваться. Они могут меняться в зависимости от трудовой деятельности, их следует выяснить у врача и выполнять.

Хрусталик разделяет внутреннюю поверхность глаза на две камеры : переднюю камеру, заполненную водянистой влагой, и заднюю камеру, заполненную стекловидным телом. Хрусталик представляет собой двояковыпуклую эластичную линзу, которая крепится на мышцах ресничного тела. Ресничное тело обеспечивает изменение формы хрусталика.

Сокращение или расслабление волокон ресничного тела приводит к расслаблению или натяжению цинновых связок, которые отвечают за изменение кривизны хрусталика.

Глаз позвоночных часто сравнивают с фотокамерой, так как система линз (роговица и хрусталик) дает перевернутое и уменьшенное изображение объекта на поверхности сетчатки.(Герман Гельмгольц).

Количество проходящего через хрусталик света регулируется переменной диафрагмой (зрачком), а хрусталик способен фокусировать более близкие и более удаленные объекты.

Оптическая система - диоптрический аппарат- представляет собой сложную, неточно центрированную систему линз, которая отбрасывает перевернутое, сильно уменьшенное изображение окружающего мира на сетчатку (мозг "переворачивает обратное изображение, и оно воспринимается как прямое) Оптическую систему глаза составляют - роговица, водянистая влага, хрусталик и стекловидное тело.

При прохождении лучей через глаз они преломляются на четырех поверхностях раздела:

1. Между воздухом и роговицей

2. Между роговицей и водянистой влагой

3. Между водянистой влагой и хрусталиком

4. Между хрусталиком и стекловидным телом .

Преломляющие среды имеют разные показатели преломления.

{Сложность оптической системы глаза затрудняет точную оценку хода лучей внутри него и оценку изображения на сетчатке. Поэтому пользуются упрощенной моделью - "редуцированным глазом", в котором все преломляющие среды объединяют в единую сферическую поверхность и они имеют один и тот же показатель преломления.

Большая часть преломления происходит при переходе из воздуха в роговицу - эта поверхность действует как сильная линза в 42 D, а также на поверхностях хрусталика.

Преломляющая сила

Преломляющая сила линзы измеряется ее фокусным расстоянием (f) . Это то расстояние позади линзы, на котором параллельные пучки света сходятся в одной точке.

Узловая точка - точка в оптической системе глаза через которую лучи идут не преломляясь.

Преломляющая сила рефракций любой оптической системы выражается в диоптриях.

Диоптрия - равна преломляющей силе линзы с фокусным расстоянием 100 см или 1 метр

Оптическая сила глаза вычисляется как обратное фокусное расстояние:

где f - заднее фокусное расстояние глаза (выраженное в метрах)

В нормальном глазу общая преломляющая сила диоптрического аппарата составляет 59 D при рассматривании далеких предметов и 70,5 D - при рассматривании близких предметов.

Аккомодация

Для получения четкого изображения предмета на каком-то определенном расстоянии оптическая система должна быть перефокусирована. Для этого существуют 2-а простых способа

а) смещение хрусталика относительно сетчатки, как в фотокамере (у лягушки); -(Уильям Бейц –американский офтальмолог –теория связана с поперечными и продольными мышцами -19 век)

б) или увеличение его преломляющей силы (у человека) – (Герман Гельмгольц).

Приспособление глаза к ясному видению удаленных на разное расстояние предметов называют - аккомодацией.

Аккомодация происходит путем изменения кривизны поверхностей хрусталика при помощи натяжения или расслабления ресничного тела.

Усиление рефракции хрусталика при аккомодации на ближнюю точку достигается увеличением кривизны его поверхности, т.е. он становится более округлым, а на дальнюю точку плоским. Изображение на сетчатке получается действительным уменьшенным и обратным.

При аккомодации происходят изменения кривизны хрусталика, т.е. его преломляющей способности.

Изменения кривизны хрусталика обеспечивается его эластичностью и цинновыми связками , которые прикреплены к ресничному телу. В ресничном теле находятся гладкомышечные волокна.

При их сокращении тяга цинновых связок ослабляется (они всегда натянуты и растягивают капсулу сжимающую и уплощающую хрусталик). Хрусталик вследствие своей эластичности принимает более выпуклую форму, если происходит расслабление цилиарной мышцы (ресничное тело) - цинновые связки натягиваются и хрусталик уплощается.

Таким образом, ресничные мышцы являются аккомодационными мышцами. Они иннервируются парасимпатическими нервными волокнами глазодвигательного нерва. Если закапать атропин (выключается парасимпатическая система) нарушается ближнее зрение , так как происходит расслабление ресничного тела и натяжение цинновых связок - хрусталик уплощается. Парасимпатические вещества - пилокарпин и эзерин- вызывают сокращение ресничной мышцы и расслабление цинновых связок .

Хрусталик имеет выпуклую форму.

В глазу с нормальной рефракцией резкое изображение далекого объекта на сетчатке образуется только в том случае, если расстояние между передней поверхности роговицы и сетчаткой составляет 24, 4 мм (в среднем 25-30 см)

Расстояние наилучшего зрения - это расстояние, на котором нормальный глаз испытывает наименьшее напряжение при рассматривании деталей предмета.

Для нормального глаза молодого человека дальняя точка ясного видения лежит в бесконечности.

Ближняя точка ясного видения находится на расстоянии 10 см от глаза (ближе четко видеть нельзя лучи идут параллельно).

С возрастом из-за отклонения формы глаза или преломляющей силы диоптрического аппарата эластичность хрусталика падает.

В пожилом возрасте ближняя точка сдвигается (старческая дальнозоркость или пресбиопия ), так в 25 лет ближняя точка располагается на расстоянии уже около 24 см , а к 60 годам уходит на бесконечность . Хрусталик с возрастом становится менее эластичным и при ослаблении цинновых связок его выпуклость или не изменяется или изменяется незначительно. Поэтому ближайшая точка ясного видения отодвигается от глаз. Коррекция этого недостатка за счет двояковыпуклых линз. Существуют еще две аномалии преломления лучей (рефракции) в глазу.

1. Близорукость или миопия (фокус перед сетчаткой в стекловидном теле).

2. Дальнозоркость или гиперметропия (фокус перемещается за сетчатку).

Основной принцип всех дефектов состоит в том, что преломляющая сила и длина глазного яблока не согласуется между собой.

При миопии - глазное яблоко слишком длинно, а преломляющая сила имеет нормальную величину. Лучи сходятся перед сетчаткой в стекловидном теле, а на сетчатке возникает круг расстояния. У близорукого дальняя точка ясного видения находится не в бесконечности, а на конечном, близком расстоянии. Корректирование - необходимо уменьшить преломляющую силу глаза, используя вогнутые линзы с отрицательными диоптриями.

При гиперметропии и пресбиопии (старческая), т.е. дальнозоркости , глазное яблоко является слишком коротким и поэтому параллельные лучи отдалеких предметов собираются сзади сетчатки, а на ней получается расплывчатое изображение предмета. Этот недостаток рефракции может быть компенсирован путем аккомодационного усилия, т.е. увеличением выпуклости хрусталика. Коррекция с помощью положительных диоптрий, т.е. двояковыпуклых линз.

Астигматизм - (относится к аномалиям рефракции) связан с неодинаковым преломлением лучей в разных направлениях (н-р по вертикальному и горизонтальному меридиану). Все люди в небольшой степени являются астигматиками. Это связано с несовершенством строения глаза в результате не строгой сферичности роговицы (используют цилиндрические стекла).

, хрусталик и стекловидное тело . Их совокупность называется диоптрическим аппаратом . В нормальных условиях происходит рефракция (преломление) лучей света от зрительной мишени роговицей и хрусталиком, гак что лучи фокусируются на сетчатке . Преломляющая сила роговицы (основного рефракционного элемента глаза) равна 43 диоптриям . Выпуклость хрусталика может изменяться, и его преломляющая сила варьируется между 13 и 26 диоптриями. Благодаря этому хрусталик обеспечивает аккомодацию глазного яблока к объектам, находящимся на близком или далеком расстоянии. Когда, например, лучи света от удаленного объекта входят в нормальный глаз (с расслабленной цилиарной мышцей), мишень оказывается на сетчатке в фокусе. Если же глаз направлен па ближний объект, они фокусируются позади сетчатки (т.е. изображение на ней расплывается), пока не произойдет аккомодация. Цилиарная мышца сокращается, ослабляя натяжение волокон пояска; кривизна хрусталика увеличивается, и в результате изображение фокусируется па сетчатке.

Роговица и хрусталик вместе составляют выпуклую линзу. Лучи света от объекта проходят через узловую точку линзы и образуют па сетчатке перевернутое изображение, как в фотоаппарате. Сетчатку можно сравнить с фотопленкой, поскольку обе они фиксируют зрительные изображения. Однако сетчатка устроена гораздо сложнее. Она обрабатывает непрерывную последовательность изображений, а также посылает в мозг сообщения о перемещениях зрительных объектов, угрожающих признаках, периодической смене света и темноты и другие зрительные данные о внешней среде.

Хотя оптическая ось человеческого глаза проходит через узловую точку хрусталика и точку сетчатки между центральной ямкой и диском зрительного нерва ( рис. 35.2), глазодвигательная система ориентирует глазное яблоко на участок объекта, называемый точкой фиксации. От этой точки луч света идет через узловую точку и фокусируется в центральной ямке; таким образом, он проходит вдоль зрительной оси. Лучи от остальных участков объекта фокусируются в области сетчатки вокруг центральной ямки ( рис. 35.5).

Фокусирование лучей на сетчатке зависит не только от хрусталика, но и от радужки . Радужка выполняет роль диафрагмы фотоаппарата и регулирует не только количество света, поступающего в глаз, но, что еще важнее, глубину зрительного поля и сферическую аберрацию хрусталика. При уменьшении диаметра зрачка глубина зрительного поля возрастает и лучи света направляются через центральную часть зрачка, где сферическая аберрация минимальна. Изменения диаметра зрачка происходят автоматически (т.е. рефлекторно) при настройке (аккомодации) глаза на рассматривание близких предметов. Следовательно, во время чтения или другой деятельности глаз, связанной с различением мелких объектов, качество изображения улучшается с помощью оптической системы глаза.

На качество изображения влияет еще один фактор - рассеивание света. Оно минимизируется путем ограничения пучка света, а также его поглощения пигментом сосудистой оболочки и пигментным слоем сетчатки. В этом отношении глаз снова напоминает фотоаппарат. Там рассеивание света тоже предотвращается посредством ограничения пучка лучей и его поглощения черной краской, покрывающей внутреннюю поверхность камеры.

Фокусирование изображения нарушается, если размер зрачка не соответствует преломляющей силе диоптрического аппарата. При миопии (близорукости) изображения удаленных объектов фокусируются перед сетчаткой, не доходя до нее ( рис. 35.6). Дефект корректируется с помощью вогнутых линз. И наоборот, при гиперметропии (дальнозоркости) изображения далеких предметов фокусируются позади сетчатки. Чтобы устранить проблему, нужны выпуклые линзы ( рис. 35.6). Правда, изображение можно временно сфокусировать за счет аккомодации, но при этом утомляются цилиарные мышцы и глаза устают. При астигматизме возникает асимметрия между радиусами кривизны поверхностей роговицы или хрусталика (а иногда сетчатки) в разных плоскостях. Для коррекции используются линзы со специально подобранными радиусами кривизны.

Упругость хрусталика с возрастом постепенно снижается. Падает эффективность его аккомодации при рассматривании близких предметов ( пресбиопия). В молодом возрасте преломляющая сила хрусталика может меняться в широком диапазоне, вплоть до 14 диоптрий. К 40 годам этот диапазон уменьшается вдвое, а после 50 лет - до 2 диоптрий и ниже. Пресбиопия корректируется выпуклыми линзами.

Зрительное восприятие – многозвеньевой процесс, начинающийся с проекции изображения на сетчатку глаза и возбуждения фоторецепторов и заканчивающийся принятием высшими отделами зрительной сенсорной системы решения о наличии в поле зрения того или иного зрительного образа. В связи с необходимостью наводить глаза на рассматриваемый объект, вращая их, природа создала у большинства видов животных шарообразную форму глазного яблока. На пути к светочувствительной оболочке глаза – сетчатке – лучи света проходят через несколько светопроводящих сред – роговицу, влагу передней камеры, хрусталик и стекловидное тело, назначение которых преломлять их и фокусировать в области расположения рецепторов на сетчатке, обеспечивать четкое изображение на ней.

Камера глаза имеет 3 оболочки. Наружная непрозрачная оболочка – склера, переходит спереди в прозрачную роговицу. Средняя сосудистая оболочка в передней части глаза образует ресничное тело и радужную оболочку, обусловливающую цвет глаз. В середине радужки имеется отверстие – зрачок, регулирующий количество пропускаемых световых лучей. Диаметр зрачка регулируется зрачковым рефлексом, центр которого находится в среднем мозге. Внутренняя сетчатая оболочка (сетчатка) содержит фоторецепторы глаза (палочки и колбочки) и служит для преобразования световой энергии в нервное возбуждение.

Основными преломляющими средами глаза человека являются роговица (обладает наибольшей преломляющей силой) и хрусталик, который представляет собой двояковыпуклую линзу. В глазу преломление света проходит по общим законам физики. Лучи, идущие из бесконечности через центр роговицы и хрусталика (т.е. через главную оптическую ось глаза) перпендикулярно к их поверхности, не испытывают преломления. Все остальные лучи преломляются и сходятся внутри камеры глаза в одной точке – фокусе . Такой ход лучей обеспечивает четкое изображение на сетчатке, причем оно получается уменьшенным и обратным (рис. 26).

Рис. 26. Ход лучей и построение изображений в редуцированном глазу:

АВ – предмет; аb – его изображение; Dd – главная оптическая ось

Аккомодация. Для ясного видения предмета необходимо, чтобы лучи от его точек попадали на поверхность сетчатки, т.е. были здесь сфокусированы. Когда человек смотрит на далекие предметы, их изображение сфокусировано на сетчатке и они видны ясно. При этом близкие предметы видны неясно, их изображение на сетчатке расплывчато, т.к. лучи от них собираются за сетчаткой (рис. 27). Видеть одновременно одинаково ясно предметы, удаленные от глаза на разное расстояние, невозможно.

Рис. 27.Ход лучей от близкой и далекой точки:

От далекой точки А (параллельные лучи) изображение а получается на сетчатке при ненапряженном аккомодационном аппарате; при этом от близкой точки В изображениев образуется за сетчаткой

Приспособление глаза к четкому видению различно удаленных предметов называется аккомодацией. Этот процесс осуществляется за счет изменения кривизны хрусталика и, следовательно, его преломляющей способности. При рассматривании близких предметов хрусталик делается более выпуклым, благодаря чему лучи, расходящиеся от светящейся точки, сходятся на сетчатке. При рассмотрении далеких предметов хрусталик становится менее выпуклым, как бы растягиваясь (рис. 28). Механизм аккомодации сводится к сокращению ресничных мышц, которые изменяют выпуклость хрусталика .

Существует две главные аномалии преломления лучей (рефракции) в глазу: близорукость и дальнозоркость. Они обусловлены, как правило, ненормальной длиной глазного яблока. В норме продольная ось глаза соответствует преломляющей силе глаза. Однако у 35 % людей имеются нарушения этого соответствия.

В случае врожденной близорукости продольная ось глаза больше нормы и фокусировка лучей происходит перед сетчаткой, а изображение на сетчатке становится расплывчатым (рис. 29). Приобретенная близорукость связана с увеличением кривизны хрусталика, возникающая, в основном, при нарушении гигиены зрения. В дальнозорком глазу, наоборот, продольная ось глаза меньше нормы и фокус располагается за сетчаткой. В результате изображение на сетчатке тоже расплывчато. Приобретенная дальнозоркость возникает у пожилых людей из-за уменьшения выпуклости хрусталика и ухудшения аккомодации. В связи с возникновением старческой дальнозоркости ближняя точка ясного видения с возрастом отодвигается (от 7 см в 7 – 10 лет до 75 см в 60 лет и более).