Выбор конденсатоотводчика. Условная пропускная способность конденсатоотводчика

Температура греющего пара на входе в теплообменник 1270С, следовательно, давление Р = 2,5160 ат = =0,247 МПа.

При данном давлении устойчиво работает конденсатороотводчик термодинамический муфтовый чугунный типа 45ч12нж.

Ø Расчётное количество конденсата после теплообменника:

Расход греющего пара Gрасч = 2774 кг/ч, тогда G = 1,2Gрасч = 3,3 т/ч.

Ø Давление пара перед конденсатоотводчиком:

Р1 = 0,95*Р = 1,44 ати.

Ø Давление пара после конденсотоотводчика:

Р2 = 0,5* Р1 = 0,72 ати.

Ø Условная пропускная способность:

KVy = G/(A*DP0,5), где DP = 0,72ат = 0,07МПа – перепад давления на конденсатоотводчике;

А = 0,67 – коэффициент, учитывающий температуру конденсата и перепад давлений на конденсатоотводчике (11, стр.6).

KVy = 3,3/(0,67*0,720,5) = 6 т/ч.

Ø Подбор конденсатоотводчиков типа 45ч12нж по (11, стр. 7):

Установим 3 одинаковых конденсатоотводчика с условной пропускной способностью KVy = 2; диаметр условного прохода равен 40мм; размеры L=170мм, L1= 22мм, Hmax=89мм, H1= 42,5мм, Do=111,5мм.

Нестехиометрические твердые оксиды - новые vатериалы современной техники
Обычно об открытиях в химии сообщается в специальных периодических изданиях - научных и технических журналах. Немногие из этих сообщений попадают в ежедневные газеты, потому что массовый чи...

Металлические кластеры
Кластеры уже далеко не новое явление в области химии, но их углубленное изучение открытия нового, всегда представляло интерес для химиков-практикантов. Изучение именно металлических кластер...

Синтез и исследование комплексов рения (IV) с некоторыми аминокислотами
Предложены методы синтеза комплексных соединений рения (IV) c некоторыми аминокислотами состава [К(LH)], (LH)2 и H2O (L’–глицин-NH2-CH2-COOH; L-лейцин-((CH3)2-CH-CH2-CH(N ...

Формула расчета выглядит следующим образом:

где:
D - диаметр трубопровода, мм

Q - расход, м3/ч

v - допустимая скорость потока в м/с

Удельный объем насыщенного пара при давлении 10 бар равен 0,194 м3/кг, это означает, что объемный расход 1000 кг/ч насыщенного пара при 10 бар будет составлять 1000х0,194=194 м3/ч. Удельный объем перегретого пара при 10 бар и температуре 300°С равен 0,2579 м3/кг, а объемный расход при том же количестве пара уже будет составлять 258 м3/ч. Таким образом можно утверждать, что один и тот же трубопровод не подойдет для транспортировки и насыщенного, и перегретого пара.

Приведем несколько примеров расчетов трубопроводов для разных сред:

1. Среда - вода. Сделаем расчет при объемном расходе - 120 м3/ч и скорости потока v=2 м/с.
D= =146 мм.
То есть необходим трубопровод с номинальным диаметром DN 150.

2. Среда - насыщенный пар. Сделаем расчет для следующих параметров: объемный расход - 2000 кг/ч, давление - 10 бар при скорости потока - 15 м/с. В соответствии с удельный объем насыщенного пара при давлении 10 бар равен 0,194 м3/ч.
D= = 96 мм.
То есть необходим трубопровод с номинальным диаметром DN 100.

3. Среда - перегретый пар. Сделаем расчет для следующих параметров: объемный расход - 2000 кг/ч, давление - 10 бар при скорости потока 15 м/с. Удельный объем перегретого пара при заданном давлении и температуре, например, 250°С, равен 0,2326 м3/ч.
D= =105 мм.
То есть необходим трубопровод с номинальным диаметром DN 125.

4. Среда - конденсат. В данном случае расчет диаметра трубопровода (конденсатопровода) имеет особенность, которую необходимо учитывать при расчетах, а именно: необходимо принимать во внимание долю пара от разгрузки. Конденсат, проходя через конденсатоотводчик, и попадая в конденсатопровод, разгружается (то есть конденсируется) в нем.
Доля пара от разгрузки определяется по следующей формуле:
Доля пара от разгрузки =, где

h1 - энтальпия конденсата перед конденсатоотводчиком;
h2 - энтальпия конденсата в конденсатной сети при соответствующем давлении;
r - теплота парообразования при соответствующем давлении в конденсатной сети.
По упрощенной формуле доля пара от разгрузки определяется, как разность температур до и после конденсатоотводчика х 0,2.

Формула расчета диаметра коденсатопровода будет выглядеть так:

D= , где
ДР - доля от разгрузки конденсата
Q - количество конденсата, кг/ч
v” - удельный объем, м3/кг
Проведем расчет конденсатопровода для следующих исходных значений: расход пара - 2000 кг/ч с давлением - 12 бар (энтальпия h’=798 кДж/кг), разгруженного до давления 6 бар (энтальпия h’=670 кДж/кг, удельный объем v”=0.316 м3/кг и теплота конденсирования r=2085 кДж/кг), скорость потока 10 м/с.

Доля пара от разгрузки = = 6,14 %
Количество разгруженного пара будет равно: 2000 х 0,0614=123 кг/ч или
123х0,316= 39 м3/ч

D= = 37 мм.
То есть необходим трубопровод с номинальным диаметром DN 40.

ДОПУСТИМАЯ СКОРОСТЬ ПОТОКА

Показатель скорости потока - не менее важный показатель при расчете трубопроводов. При определении скорости потока необходимо учитывать следующие факторы:

Потери давления. При высокой скорости потока можно выбрать меньший диаметр трубопроводов, однако при этом происходит значительная потеря давления.

Стоимость трубопроводов. Низкая скорость потока приведет к выбору большего диаметра трубопроводов.

Шум. Высокая скорость потока сопровождается увеличенным шумовым эффектом.

Износ. Высокая скорость потока (особенно в случае конденсата) приводит к эрозии трубопроводов.

Как правило, основной причиной возникновения проблем с отведением конденсата является именно заниженный диаметр трубопроводов и неверный подбор конденсатоотводчиков.

После конденсатоотводчика частички конденсата, двигаясь по трубопроводу со скоростью пара от разгрузки, достигают поворота, ударяются о стенку поворотного отвода, и скапливаются в месте поворота. После этого с высокой скоростью выталкиваются вдоль трубопроводов, приводя к их эрозии. Опыт показывает, что 75% протечек в конденсатопроводах происходит в трубных коленах.

Чтобы снизить вероятное возникновение эрозии и ее негативное воздействие, необходимо для систем с поплавковыми конденсатоотводчиками для расчета принимать скорость потока около 10 м/с, а для систем с другими типами конденсатоотводчиков - 6 -8 м/с. При расчетах конденсатопроводов, в которых отсутствует пар от разгрузки, очень важно делать расчеты, как для водопроводов со скоростью потока 1,5 - 2 м/с, а в остальных учитывать долю пара от разгрузки.

В таблице ниже приведены нормы скорости потока для некоторых сред:

Среда

Параметры

Скорость потока м/с

Пар

до 3 бар

10-15

3 -10 бар

15-20

10 - 40 бар

20-40

Конденсат

Трубопровод, заполненный конденсатом

Конденсато -паровая смесь

6-10

Питательная вода

Линия всасывания

0,5-1

Трубопровод подачи

Как выбрать конденсатоотводчик?

Полезно: энергетикам, механикам

Если все мужики одинаковые, то зачем женщины так долго тянут с выбором? Но сегодня задача проще, конденсатоотводчик не на всю жизнь, а как говорит статистика на 5 – 7 лет в среднем. И чтобы Вам не мучиться как, что и куда поставить чтобы конденсат был отведён правильно наша компания немного пояснит на что стоит обратить внимание. Тут ответ простой: доверьте это профессионалам, просто соберите нужные параметры системы и потребителя пара, а мы или наши коллеги из других организаций сделают уже подбор.


Если брать прямые участки труб то, на них чаще всего ставится термодинамические или термостатические конденсатоотводчики. При этом очень важно где эксплуатируется данный трубопровод на улице или в помещении

Обращаясь к нашему опыту мы всегда ставили на прямые участки термодинамические, а на потребители поплавковые.

При этом очень важно знать параметры пара, такие как давление. Возникнет вопрос: Где-ж его взять то, давление?! Вы будете смеяться, его нужно измерить. Если стоит теплообменник то перед ним лучше поставить манометр и это очень важно.

Следующее, что необходимо – это расход конденсата, обычно стоят счётчики. Как правило – это счётчики горячей воды. А вот кто не знает расход, встречаются такие сложности, то смело ищите этот параметр в паспорте потребителя пара. Чаще всего там есть это значение, либо на худой конец есть расход пара, который потребляет этот агрегат. Суть тут следующая: Расход пара = расход конденсата, т.к. весь пар должен превратиться в конденсат, а иначе какие мы после этого волшебники)))

Ну и, конечно, нужно знать температуру пара. Иначе подбор не будет правильно осуществлён.

Ну и последний параметр – это диаметр присоединения. Да часто случается что заказываеют опираясь только на этот параметр. Это просто и не профессионально. Почему? Возможна не корректная работа конденсатоотводчика или излишними тратами (можно подобрать и дешевле). Тут разные могут быть ещё неприятности такие как: излишнее охлаждение конденсата (не так неприятно) но если скаканёт давление и плавно прискочет в эти излишки, то вероятно повредит конденсатоотводчик и он в последствии может выйти из строя.

Также можно сделать совсем наоборот, т.е. поставить конденсатоотводчик с более низкой пропускной способностью, чем необходимо. Что будет!? Денег съэкономите на покупке и возможно «подтопление» конденсатом постребитель пара. Ну к примеру ёмкость будет недостаточно нагреваться, отсюда потери времени, а возможно нарушение технологии и прокисший кефир на выходе (ну это я так.. перегнул конечно)

Т. Гуцуляк, А. Кирилюк

Из-за постоянного удорожания энергоресурсов все промышленные отрасли заняты поиском альтернативных источников повышения энергоэффективности. Водяной пар, как одно из средств передачи тепловой энергии, становится всё более популярным

Важную роль в эффективном отборе тепла от пара, помимо теплообменников, играют конденсатоотводчики. Их главная задача - отбор от водяного пара как можно большего количества тепла - довольно непроста и зависит не только от наличия самих конденсатоотводчиков в системе, но также и от того, насколько правильно они подобраны. Чтобы правильно выбрать конденсатоотводчик для конкретного производственного процесса, необходимо хорошо знать и понимать принципы его работы и специфику применения пара в данном процессе.

Назначение конденсатоотводчиков

Конденсатоотводчик должен препятствовать уменьшению коэффициента теплопередачи. Уменьшение происходит за счет образования конденсата у потребителя пара, либо в паропроводе. Задача данного оборудования - отводить конденсат, не допуская при этом «пролет» и выпуск пара.

Пар, теряя тепло, необходимое для теплообменных процессов, отдает его стенкам трубопровода, превращаясь в конденсат. Если его не отводить - ухудшается «качество» пара, возникают кавитация и гидроудары. Наилучший вариант, когда конденсатоотводчик способен отводить конденсат, а также воздух и другие неконденсированные газы.

Не существует универсального конденсатоотводчика, подходящего для всех задач и условий применения. Все типы конденсатоотводчиков отличаются по принципу работы, при этом имея свои недостатки и преимущества. Всегда существует лучшее решение для конкретного применения в пароконденсатной системе. Выбор конденсатоотводчика зависит от
температуры, давления и количества образуемого конденсата.

Рис. 1. Основные типы:
а) - механический (поплавковый); б) - термодинамический; в) - термостатический

Существует три принципиально разных типа: механические, термостатические и термодинамические.

Принцип действия механических основан на разнице плотности пара и конденсата. Клапан приводится в действие шаровым поплавком или поплавком в виде перевернутого стакана. Механические конденсатоотводчики обеспечивают непрерывный отвод конденсата при температуре пара, поэтому этот тип устройств хорошо подходит для теплообменных аппаратов с большими поверхностями теплообмена и интенсивным образованием больших объемов конденсата.

Термостатические конденсатоотводчики определяют разницу температуры пара и конденсата. Чувствительный элемент и исполнительный механизм в данном случае - термостат. Прежде чем конденсат будет отведен, он должен быть охлажден до температуры ниже температуры сухого насыщенного пара.

В основе принципа действия термодинамического конденсатоотводчика лежит разница скоростей прохождения пара и конденсата в зазоре между диском и седлом. При прохождении конденсата из-за низкой скорости диск поднимается и пропускает конденсат. При поступлении пара в термодинамический конденсатоотводчик скорость увеличивается, приводя к падению статического давления, и диск опускается на седло. Пар, находящийся над диском, благодаря большей площади контакта, удерживает диск в закрытом положении. По мере конденсации пара давление над диском падает, и диск снова начинает подниматься, пропуская конденсат.

Таблица 1. Типы конденсатоотводчиков


Таблица 2. Сравнение конденсатоотводчиков и их типов

Выбор конденсатоотводчика

Для правильного подбора условного диаметра конденсатоотводчика нужно сначала определить входное давление, см. рис. 3.

Если конденсатоотводчик установлен после паропотребляющей установки, входное давление на 15% ниже давления на входе в установку.

Для примерного расчета противодавления, принимаем, что каждый метр подъема трубопровода составляет 0,11 бар противодавления.

Перепад давления = Входное давление - Противодавление.

Рассчитать количество конденсата можно, используя техническую документацию производителя паропотребляющего оборудования с учетом коэффициента запаса по расходу конденсата. На основных паропроводах, в теплообменниках и подобном оборудовании запас пропускной способности нужно установить в 2,5 - 3 раза больше расчетного. В других случаях запас больше в 1,5 - 2 раза.

После расчета коэффициента запаса по расходу конденсата, диаметр конденсатоотводчика выбирается по диаграмме
пропускной способности (см. рис.2), которую предоставляет завод-производитель.

Ниже в качестве примера приведены диаграммы пропускной способности AYVAZ SK-51 (данные и рекомендации предоставлены компанией «АЙВАЗ УКРАИНА»).

Рис. 2. Диаграмма пропускной способности SK-51 (1/2”-3/4”-1”)

Пример использования диаграммы (см. рис. 2): для конденсатоотводчика задан расход по конденсату 180 кг/час.

Конденсат отводится от теплообменника при давлении 6 бар и противодавлении 0,2 бар. Перепад давления 6 - 0,2 = 5,8 бар.
Расход по конденсату 180 х 3 = 540 кг/час.
Коэффициент запаса: 3.

Для отвода 540 кг/час конденсата при перепаде 5,8 бар, по синей линии на диаграмме, помеченной цифрой 10 (пропускная способность в данном случае составляет 700 кг/час), выбираем конденсатоотводчик диаметром 1” (Ду25). Цифра 10 обозначает размер отверстия выпускного клапана. Как видно из диаграммы (рис. 2) конденсатоотводчики диаметром 1/2” и 3/4” выбирать в данном случае нельзя, т.к. их пропускная способность по конденсату ниже требуемой.

Использование энергии пара вторичного вскипания

Во время нагрева воды при постоянном давлении её температура и теплосодержание растет. Это продолжается до тех пор, пока вода не закипит. Достигая точки кипения, температура воды не изменяется до тех пор, пока вода полностью не превратится в пар. И поскольку требуется максимально использовать тепловую энергию пара, используются конденсатоотводчики, см. рис 3.

Рис. 3. Использование конденсата и пара вторичного вскипания для теплообмена

Конденсат имеет ту же температуру при заданном давлении, что и пар. Когда конденсат после конденсатоотводчика попадает в зону атмосферного давления, он моментально вскипает и часть его испаряется, т.к. температура конденсата выше температуры кипения воды при атмосферном давлении.

Пар, который образуется при вскипании конденсата, называют паром вторичного вскипания.

Т.е. это пар, который образуется в результате попадания конденсата в атмосферу или среду с низким давлением и температурой.

Расчет количества пара вторичного вскипания:

где:
Эк : Энтальпия конденсата при попадании в конденсатоотводчик при заданном давлении (кДж/кг).
Эв : Энтальпия конденсата после конденсатоотводчика при атмосферном давлении, либо при текущем давлении в конденсатной линии (кДж/кг).
Ст : Скрытая теплота парообразования при атмосферном давлении, либо при текущем давлении в конденсатной линии (кДж/кг) трубопровода составляет 0,11 бар противодавления.

Как видно, чем больше разница давлений, тем большее количество пара вторичного вскипания образуется. Тип используемого конденсатоотводчика так же влияет на количество образуемого конденсата. Механические отводят конденсат с температурой близкой к температуре насыщения пара. В то время как термостатические - отводят конденсат с температурой значительно ниже температуры насыщения, при этом количество пара вторичного вскипания уменьшается.

При отборе пара вторичного вскипания нужно учесть, что:

  1. Для получения даже малого количества пара вторичного вскипания потребуется большое количество конденсата. Необходимо обратить особое внимание на пропускную способность конденсатоотводчика. Так же нужно учитывать, после регулирующих клапанов давление как правило низкое.
  2. Сфера применения должна соответствовать таковой для использования пара вторичного вскипания. Количество пара вторичного вскипания должно равняться или его должно быть немного больше, чем требуется для обеспечения технического процесса.
  3. Участок использования пара вторичного вскипания не должен располагаться далеко от оборудования, от которого отводится высокотемпературный конденсат.

Пример расчет количества пара вторичного вскипания в системе, где конденсат отводится сразу после его образования см. ниже.

Возьмем данные из таблицы насыщенного пара: при давлении 8 бар, 170,5°С, энтальпия конденсата = 720,94 кДж/кг. При атмосферном давлении, 100°С, энтальпия конденсата = 419,00 кДж/кг. Разница энтальпий составляет 301.94 кДж/кг. Скрытая теплота парообразования при атмосферном давлении = 2 258 кДж/кг. Тогда количество пара вторичного вскипания составит:

Таким образом, если расход пара в системе равен 1000 кг, то количество пара вторичного вскипания составит 134 кг.

Особенности монтажа конденсатоотводчиков

При установке конденсатоотводчика, следует проследить, чтобы стрелка на его корпусе соответствовала направлению потока, см. рис 4, а).

Конденсатоотводчики поплавкового типа должны устанавливаться строго горизонтально. Некоторые, в специальном исполнении могут устанавливаться вертикально. Вход пара в такие конденсатоотводчики должен быть с нижней стороны, см. рис 4, б).

Конденсатоотводчики должны располагаться ниже подключения паровой линии к оборудованию. В противном случае, возможно подтопление оборудования. В случаях, когда установка конденсатоотводчиков таким образом невозможна, необходимо организовать принудительный отвод конденсата, см. рис 4, в).

Термодинамические конденсатоотводчики работают в любом положении. Однако, горизонтальное положение более предпочтительно при установке см. рис 4, г).

Рис. 4. Правильный монтаж конденсатоотводчика

Конденсатоотводчики не должны устанавливаться друг за другом ни в коем случае. Иначе, второй будет создавать давление, которое негативно скажется на работе первого, который уже смонтирован, см. рис. 5, а).

Фильтры, установленные перед конденсатоотводчиками, должны быть повернуты влево или вправо. В противном случае, в нижней части фильтра будет скапливаться конденсат, что может привести к гидроударам, см. рис. 5, б).


Рис. 5. Установка конденсатоотводчика в системе

Правильный выбор и применение оборудования от производителя AYVAZ - эффективный способ повысить уровень энергосбережения в паровых системах.

Больше важных статей и новостей в Telegram-канале AW-Therm . Подписывайтесь!

Просмотрено: 4 718 Перевод статьи, напечатанной в журнале компании Armstrong International.

Choosing a Better Steam Trap/ Armstrong International, Inc. //
Trap Magazin, 1993. – Vol. 61, No. 1.- P. 14-16.

Статья “Выбор наиболее подходящего конденсатоотводчика” была опубликована в корпоративном журнале “ICI Engineer“, принадлежащем одной из крупнейших в мире химической группе компаний ICI PLC London, England. Группа имеет оборот в 22,5 миллиарда долларов в год, занято в производстве более 128 000 человек, из которых около 25% работает на заводах в Америке, а остальные предприятия находятся в 35 странах и расположены более чем в 600 городах.

Статья перепечатана компанией Armstrong Intl с разрешения редакции журнала.

Кульминацией семилетнего наблюдения за работой конденсатоотводчиков двух изготовителей конденсатоотводчиков и их испытаниями на заводах в Хаддерсфилде и Гренджмаутсе в сочетании с испытаниями на работоспособность и потери пролетного пара в лабораториях стало пересмотренное Руководство по проектированию ICI “Выбор конденсатоотводчиков“ (EDG PIP. 30. 01A).

Примечание редактора Trap Magazin
Инженеры двух предприятий тонкой химии ICI в Соединенном Королевстве провели семилетние наблюдения за работой различных типов конденсатоотводчиков, итоги которых описаны в данной статье. Так как компания Армстронг рекомендует производить подбор конденсатоотводчиков, основываясь на практическом опыте, - собственном, представителей фирмы Армстронг и других специалистов, накопивших его в процессе обеспечения дренажа аналогичного оборудования, - эта статья переиздается для того, чтобы все заинтересованные стороны могли извлечь пользу из опыта ICI.

Старые стандарты по подбору конденсатоотводчиков имели множество недостатков, при этом, наиболее значительным было то, что в них не учитывался ни тип дренируемого оборудования, ни способ дренажа. Подобранные таким образом конденсатоотводчики часто эксплуатировались в таких условиях, для которых они не были предназначены. В частности, это относится к термодинамическим конденсатоотводчикам, на которых, в основном, базировалось большинство стандартов и которые считались на заводском уровне “конденсатоотводчиками для всех случаев жизни”.
Мониторинг работоспособности конденсатоотводчиков начался на заводе в Гренджмаутсе в 1980 году и двумя годами позже - на заводе в Хаддерсфилде после жалоб работников отдела техобслуживания и ремонта оборудования на короткий срок службы дренажей распределительных паропроводов.

Чтобы установить типы эксплуатируемых конденсатоотводчиков и проверить, как они подбирались для конкретных условий, были проведены обследования, включающие программы испытаний. Уже первые результаты произвели удручающее впечатление.
Обследование 415 конденсатоотводчиков на одном из заводов показало, что 19% из них были неисправными, а 63% были признаны неподходящими для конкретных условий.

При обследовании 132 конденсатоотводчиков на распределительных паропроводах, 42% из них были неисправными.
Мониторинг сроков службы конденсатоотводчиков также был начат в 1980 году и продолжается сейчас.

Фактические средние сроки службы разных типов конденсатоотводчиков приведены в Таблице 1.
Табл. 1. Средний срок службы разных типов конденсатоотводчиков

Тип конденсатоотводчиков Срок службы в системах с разным давлением пара
Высокое 45 кг/см2 Среднее 14 кг/см2 Низкое 2,1 кг/см2
1. Термодинамические 10-12 м-цев 12 м-цев 5-7 лет
2. Поплавковые с термостатом *) не примен. 1-6 м-цев 9 м-цев - 4 года
3. С опрокинутым стаканом 18 м-цев 5 - 7 лет 12 - 15 лет
4. Термостатические разгруженные не примен. 6 м - цев 5 - 7 лет
5. Термостатические биметаллические *) 3 - 12 м-цев 2 - 3 года 7 - 10 лет

*) - в зависимости от модели и фирмы изготовителя.

Чтобы определить энергосберегающие свойства конденсатоотводчиков различных типов, на испытательных стендах лабораторий двух фирм-изготовителей были проведены испытания на пропуски пролетного пара. Испытания проводились в лабораторных условиях: в помещении с температурой воздуха 20 оС. Теплопотери корпуса конденсатоотводчиков не измерялись. Испытательная нагрузка по конденсату составляла 10 - 20 кг/час, что близко к характерным нагрузкам дренажей паропроводов.

Наиболее интересным результатом было то, что термодинамические конденсатоотводчики (наиболее широко применяемые конденсатоотводчики универсального назначения) являются наихудшими по энергосберегающим свойствам и, по сравнению с конденсатоотводчиками с опрокинутым стаканом, имеют намного меньший срок службы.

Эти испытания также обнаружили, что механические типы конденсатоотводчиков (т. е. с опрокинутым стаканом и поплавковые) обеспечивают полное удаление конденсата из паровых полостей как при малых, так и при больших расходах конденсата, в то время, как конденсатоотводчики термостатического типа имеют тенденцию накапливать конденсат в этих полостях при увеличении нагрузки. К тому же, термобиметаллические конденсатоотводчики имеют тенденцию к неустойчивой работе. Поэтому пересмотренный Руководящий документ по подбору конденсатоотводчиков содержит обновленную таблицу для подбора конденсатоотводчиков.

Конденсатоотводчики с опрокинутым стаканом
Применять как основной тип для дренажа любого технологического оборудования и паропроводов, т. е. во всех случаях, когда в паровой полости не должно быть конденсата.

Поплавковые конденсатоотводчики с термостатом выпуска воздуха
Применять для технологического оборудования, особенно при регулировании температуры, в системах с давлением пара ниже 3,5 кг/см2, либо когда применение конденсатоотводчиков с опрокинутым поплавком не обеспечивает выпуска значительных объемов воздуха.
Термостатические разгруженные конденсатоотводчики
Применять на неответственных паровых спутниках и системах отопления.

Термостатические биметаллические конденсатоотводчики
Применять для низких температур или для защиты от размораживания на паровых спутниках или системах отопления. Рекомендуемые модели должны перенастраиваться, чтобы максимально использовать теплоту конденсата или чтобы предотвратить перегрев нагреваемого продукта. Корпусные детали должны быть полностью из нержавеющей стали.

Термодинамические конденсатоотводчики
Допускается ограниченное применение для дренажей главных паропроводов и паровых спутников при давлении пара до 17 кг/см2 в качестве вынужденной альтернативы конденсатоотводчикам с опрокинутым поплавком, а также для оперативной замены при ремонтах на более высоких давлениях, если предыдущий опыт их применения в этих условиях показал, что они могут удовлетворительно работать. Из-за плохих энергосберегающих свойств и относительно короткого срока службы их применение не рекомендуется. (На заводах в Хаддерсфилде и Гренджмаутсе - не допускается.)

Турнир конденсатоотводчиков на заводе “Шелл” - Канада
Это можно было назвать большими международными гонками с выбыванием, либо Олимпиадой конденсатоотводчиков, или турниром энергосбережения. Соревнование охватывало почти весь мир и продолжалось 10 лет. Выиграл завод “Шелл” - Канада в районе Монреаля. Приз - экономия энергии пара на сумму 1 миллион долларов в год.

Соревнования начались в середине 70-х годов, вскоре после объявления эмбарго на поставки нефти. Стоимость производства пара на заводе “Шелл” в начале того десятилетия колебалась между 40 и 50 центами за 1 000 фунтов пара (0,9 ... 1,1 доллара за тонну). После того, как в течение года стоимость пара удвоилась, стало очевидно, что нужно принимать какие-то меры.

Завод “Шелл” в районе Монреаля - наибольший из 5 нефтеперерабатывающих заводов компании “Шелл” в Канаде. На заводе работало более дюжины паровых котлов производительностью от 60 до 190 тысяч фунтов пара в час (от 27 до 86 тонн/час). В паро-конденсатных системах было установлено более 4 000 конденсатоотводчиков. Эта предыстория важна потому, что в 1975 году администрация завода приняла решение рассматривать энергопотребление с точки зрения снижения затрат. Будучи частью комплексной программы, снижение потребления пара также входило в число средств для достижения поставленной цели - сократить потребление энергии на заводе к концу 1985 года на 30%.
В июле 1975 года было проведено обследование всех конденсатоотводчиков, установленных на этом нефтеперерабатывающем заводе. Было установлено, что большую часть составляли биметаллические конденсатоотводчики, а данные учета показали, что в период с 1973 по 1975 год в среднем закупалось по 1 500 новых конденсатоотводчиков в год.

Первый этап гонки с выбыванием
Было решено провести широкие испытания конденсатоотводчиков разных типов в аналогичных условиях. Во время проведения обследования, количество конденсатоотводчиков “Армстронг” на заводе составляло менее 2%, а в эксплуатации имелось около дюжины типов и моделей.

На заводе “Шелл” испытывалось около 900 конденсатоотводчиков, по 100 штук каждой из 9 моделей, изготавливаемых 6 различными фирмами. В число испытываемых типов входили конденсатоотводчики с опрокинутым поплавком, термодинамические, биметаллические и другие термостатические, изготовленные в США, Канаде и по другую сторону океана.

Эти конденсатоотводчики были установлены на различных объектах паровых систем с давлением пара 14 и 7 кг/см2, а также в системах пара низкого давления, после чего за их работой было организовано тщательное наблюдение. Критериями для оценки конденсатоотводчиков были потери пролетного пара и частота отказов.

Некоторые конденсатоотводчики отказывали уже через несколько месяцев, другие работали дольше.

Конденсатоотводчики, демонтированные в результате отказа, группировались и повторно испытывались, чтобы получить значение наработки до отказа для каждой модели.

По результатам этих испытаний, длившихся 2 года, было установлено, что наибольший потенциал проявил один из термодинамических конденсатоотводчиков и конденсатоотводчики из нержавеющей стали с опрокинутым стаканом модели 1811фирмы “Армстронг”.

Решение “Шелл” - идем с победителем
В 60-е годы для завода “Шелл” в качестве стандартных были приняты термобиметаллические конденсатоотводчики, но оказалось, что количество их отказов составляло 20 ... 27% в год. После первой стадии проведенных испытаний “Шелл” изменил свой стандарт в пользу тех двух типов конденсатоотводчиков, которые стали победителями первого этапа “гонки с выбыванием”.

В 1977 году администрация завода “Шелл” совместно с рабочей группой по энергетике приняла решение повысить технический уровень всей паро-конденсатной системы и заменить 4 200 конденсатоотводчиков. Половину из вновь установленных составляли конденсатоотводчики модели 1811 фирмы “Армстронг”, а вторую половину - термодинамические конденсатоотводчики другой фирмы. Компания “Шелл” оставила в стандартах только эти два типа, а все остальные конденсатоотводчики были исключены из заказных спецификаций и запасов. Обслуживающий персонал мог заменять неисправные конденсатоотводчики только одним из этих двух типов, которые имелись в резерве.

Вновь был организован всесторонний контроль функционирования каждой модели.

Количество отказов упало до 3 ... 5%. Количество отказов 2 100 конденсатоотводчиков с опрокинутым стаканом фирмы “Армстронг” за последние 6 лет составило около 1,8%. Это значит, что количество отказов конкурирующей модели - термодинамических конденсатоотводчиков, - было значительно выше средней величины 3 - 5% (ок. 6,2%).

Следующим решением, принятым администрацией в 1984 году, было решение применять в качестве стандартных только конденсатоотводчики с опрокинутым стаканом.

Побудительным мотивом решения был длительный срок службы этого типа конденсатоотводчиков, а также новинка в виде универсального присоединительного адаптера на модели 2011, позволяющего устанавливать конденсатоотводчик под любым углом относительно оси трубопровода. По мере выхода из строя оставшихся термодинамических конденсатоотводчиков, завод “Шелл” будет заменять их конденсатоотводчиками с опрокинутым стаканом. Этими моделями оснащаются практически все паровые спутники, а также другое оборудование паровых систем, работающее на паре как низкого давления, так и на паре 14 кг/см2.

Усилия окупаются
Рой Ганнес, руководитель рабочей группы энергетиков нефтеперерабатывающего завода “Шелл” в Монреале, докладывает, что полученные результаты уже более чем оправдали затраченные усилия. Он сказал: “ За последние 7 лет потребление пара сократилось с 24 миллионов фунтов в сутки до 15 миллионов фунтов” (с 15 900 т/сутки до 6 800 т/сутки).

Задачей, поставленной компанией “Шелл” на 10-летний период (1975 - 1985 г.), было довести сокращение потребления энергии до 30%. Фактическое сокращение потребления пара за 1984 год перекрыло поставленную цель и составило 35,2% по отношению к базовому 1972 году.

За счет мероприятий по сокращению потребления пара, нефтеперерабатывающий завод с 1978 по 1984 год сэкономил более 20 миллионов долларов. Экономия была получена как за счет модернизации и автоматизации технологии, так и за счет принятой программы по конденсатоотводчикам. С момента начала работ по конденсатоотводчикам стоимость пара увеличилась в 13 раз. За это же время объем производства на заводе также увеличился.

Рой Ганнес сообщает, что эти меры позволили вывести из эксплуатации 8 малых паровых котлов производительностью 60 000 фунтов пара в час каждый (ок. 27 т/час). Он также заявил, что вращательные приводы некоторых видов оборудования были заменены электрическими в результате увеличения стоимости пара. “Что касается конденсатоотводчиков, то большая часть экономии была получена за счет постоянного их мониторинга” - сказал Р.Ганнес.
На этом нефтеперерабатывающем заводе применяется формула предельной стоимости топлива, благодаря которой можно привести все виды энергии к стандартному виду.

Она известна под названием Формулы эквивалентных баррелей жидкого топлива.

Энергия, сэкономленная в результате программы работ по конденсатоотводчикам, равноценна приблизительно 1 миллиону долларов в год.

После окончательного учета стоимости новых конденсатоотводчиков и затрат на их установку в рамках всей программы, оказалось, что срок окупаемости затраченных средств практически равен 6 месяцам. Другими словами, программа работ по замене и стандартизации конденсатоотводчиков обеспечила возврат затраченных на нее средств менее, чем за полгода.

Результативная деятельность группы по энергосбережению
Ответственность за проверку всех конденсатоотводчиков не менее 2 раз в год возложена на двух старших технических специалистов группы по энергосбережению.

На неисправные конденсатоотводчики навешивается бирка и докладная о них направляется в диспетчерскую службу. Ремонтники получают от нее конкретное место расположения этих конденсатоотводчиков вместе с нарядом на работу.
Каждый демонтированный конденсатоотводчик регистрируется с указанием причины.

Если конденсатоотводчик отказывает в течение 3-х летнего срока гарантии, то он возвращается на завод-изготовитель для исследования и возмещения его стоимости, если это необходимо.

Конденсатоотводчики завоевывают положение в материальных запасах
“Шелл” имеет возможность опытным путем установить среднее число отказов и поддерживать запас конденсатоотводчиков на необходимом уровне. В прошлом, “Шелл” закупал конденсатоотводчики ежемесячно. Сейчас “Шелл”, зная по опыту количество отказов, заранее прогнозирует годовую потребность и производит закупку один раз в год. “Шелл” также следит за обеспечением необходимого запаса. Так как на нефтеперерабатывающем заводе всегда ведутся работы по новым проектам, то если для них требуются конденсатоотводчики, их берут для этих проектов прямо со склада. Р.Ганнес сообщает, что поскольку завод закупает сразу значительное количество конденсатоотводчиков и сам регулирует свои запасы, он может пользоваться более выгодными скидками.
В дальнейшем он оценил, что стоимость конденсатоотводчиков сопоставима со стоимостью труда на их установку и техобслуживание в системе. Оплата труда требует больших затрат. Возможно, что поэтому завод остановил свой выбор на модели 2011 фирмы “Армстронг” - считает Р.Ганнес. Длительный срок службы означает, что их не нужно менять так часто, как ранее.

Тренироваться, чтобы победить
Для членов рабочей группы по энергосбережению жизненно необходимы опыт и тренированность. Старшие технические специалисты, такие как Ален Лаплант и Ивон Сир работают на заводе “Шелл” многие годы. Стало очевидно, что для обеспечения эффективности программы энергосбережения ключевым фактором являются люди. Эти старшие технические специалисты знают производство и каждого работающего на нем.

Для успеха программы крайне необходимо и то, и другое. Все члены рабочей группы посещали семинары по энергосбережению, проводимые фирмой “Армстронг”, и используют любую дополнительную возможность, чтобы углубить знания о паре и конденсатоотводчиках.
На заводе “Шелл” действует программа ротации кадров, поэтому члены группы по энергосбережению работают в её составе достаточно долго, чтобы завоевать влияние, но не слишком долго, чтобы не дать развиться самодовольству. Такая ротация способствует проникновению свежих идей в программу энергосбережения. За время, прошедшее после написания этой статьи, руководителем рабочей группы по энергосбережению был назначен Ж.Бьюшам, заменивший Р.Ганнеса.

Репутация завоевывается успехами
В докладе Ганнеса сообщается, что программа энергосбережения является в высшей степени наглядной и репутация членов рабочей группы на всех уровнях организации довольно высока. Дважды в год группа подготавливает и передает администрации отчет о результатах работ по программе и предложения о новых проектах.

Советы профессионалов
На вопрос, какие советы можно дать другим фирмам, размышляющим о внедрении программы энергосбережения, Р.Ганнес отвечает:
“Заручитесь поддержкой руководства. Без этого все намеченные меры теряют характер обязательных. Руководство рассчитывает на результаты, и если инвестиции в работы по сбережению пара оборачиваются существенной экономией, то вашими сторонниками становятся множество людей.

Очень важно, чтобы для организации работ по программе были подобраны подобающие личности. Этих людей должно уважать не только руководство, но и операторы, бригадиры и ремонтники”.
Ганнес делает вывод, что без обязательств, взятых руководством завода “Шелл”, и без поддержки его работников было бы невозможно провести все упомянутые испытания, заменить более 4 000 конденсатоотводчиков и экономить более 1 миллиона долларов в год из средств, предназначенных на производство пара.

СПРАВКА
(о нефтеперерабатывающем заводе “Шелл” - Монреаль Восток).
Расположенный в районе Монреаля, нефтеперерабатывающий завод “Шелл” был основан в 1932 году, а в 1933 году был выведен на поточное производство с мощностью около 5 000 баррелей сырой нефти в сутки (около 800 м3/сутки).

Число работающих в то время составляло 75 человек. В 1985 г. на заводе работало около 700 человек, а производственная мощность выросла до 120 000 баррелей в сутки (19 080 м3/сутки).
В течение прошедших десятилетий завод непрерывно расширялся. Продукция этого современного предприятия включает бензин, смазочные масла и широкий ассортимент других продуктов нефтепереработки. Этот завод - наибольший из 5 нефтеперерабатывающих заводов компании “Шелл” в Канаде, а также один из крупнейших нефтеперерабатывающих заводов в Восточной Канаде.

Воду для производства пара забирают из реки Святого Лаврентия. На производство пара приходится от 30 до 35% всех затрат на энергию. В зимние месяцы потребление пара составляет 740 000 фунтов в час (335,7 т/час), а в летние месяцы падает до 560 000 фунтов в час (253,7 т/час). Основное количество пара вырабатывается четырьмя котлами высокого давления (600 psi = 42 кг/см2) и одним котлом-утилизатором (200 psi = 14 кг/см2). Также имеется несколько малых котлов-утилизаторов. Ежесуточно производится в среднем 15,2 млн фунтов пара (около 6 900 т/сутки), что значительно меньше, чем производилось в 1977 году - 24 млн фунтов (около 10 890 т/сутки).

Целлюлозно-бумажный комбинат фирмы “Вейерхеузер” ежегодно возвращает себе почти 1 миллион долларов при помощи программы менеджмента энергии пара. Конкуренция на мировом рынке вынуждает тщательно подходить к планированию и управлению производством, но не стоит убеждать в этом сотрудников целлюлозно-бумажного комбината фирмы “Вейерхеузер”, расположенного в Плимуте, Северная Каролина. Исследовав все аспекты деятельности своего предприятия, они смогли сократить затраты почти на 1 миллион долларов в год, внедрив широкую программу менеджмента энергии пара.

Гигантский комбинат, работающий с давних 30-х годов, был в 1960 г. куплен фирмой “Вейерхеузер”. Хотя конечная продукция - бумага, - не претерпела за эти годы кардинальных изменений, технология ее производства существенно обновилась.
Комбинат в Плимуте производит высокосортную бумагу, а также бумагу средней плотности, ворсистую бумагу и облицовочный картон. В настоящее время 5 бумагоделательных машин и 5 цехов по производству древесной массы обеспечивают выпуск, в среднем, 2 300 тонн продукции каждые рабочие сутки.

В среднем, комбинат вырабатывает 1,95 миллионов фунтов пара в час (884,5 т/час), 90% которого используется в технологии. Так как объем производства пара очень велик, то даже относительно небольшие неисправности вроде пропускающего пролетный пар конденсатоотводчика, установленного на паропроводе высокого давления, могут быстро увеличить убытки.

Самодостаточная система энергоснабжения
Пар и электроэнергию, необходимые для технологии и отопления, комбинат производит самостоятельно. Неиспользованная комбинатом энергия подается местной энергетической компании.

На комбинате эксплуатируется 4 паровых котла. Пар вырабатывается двумя котлами, работающими на древесных отходах (давление 1 275 psi = 90 кг/см2); одним котлом, работающим на смешанном топливе (давление 650 psi = 45 кг/см2) и одним котлом-утилизатором (давление 875 psi = 62 кг/см2). В этих котлах сжигается уголь, древесные отходы и черный щелок - побочный продукт производства древесной массы. Максимальное потребление пара отмечается зимой, когда производят 2,3 миллиона фунтов пара в час (1 043 т/час).
На комбинате в Плимуте эксплуатируется около 1 250 конденсатоотводчиков. Для дренажа основных паропроводов (давление 650 psi = 45 кг/см2) применяются конденсатоотводчики “Армстронг” модели 411G , а для дренажа паропроводов менее высокого давления (150 psi = 10,5 кг/см2), подающих пар к сушилкам бумаги и к другому технологическому оборудованию, - разные модели конденсатоотводчиков “Армстронг” серии 800.

В течение ряда лет паро-конденсатная система предприятия не была для обслуживающего персонала приоритетным объектом. Отсутствие представления о потенциале экономии, которым располагает правильно управляемая система, в сочетании с мощной национальной экономикой отвлекали внимание на другие нужды.

“Однако, - как объясняет Билли Каспер - инспектор службы эксплуатации оборудования “Вейерхеузер” - все это изменилось в начале 80-х годов, когда наша компания начала с помощью фирмы “Армстронг” искать пути повышения эффективности управления работой паро-конденсатной системы.

Определяя источники потерь, можно найти новые возможности
“Хотя энергоменеджмент должен быть важной частью работы, идея переключиться на экономию энергии, возникшая в результате выполнения программы технического обслуживания и ремонта конденсатоотводчиков, увидела свет примерно шесть лет назад”, - считает Б.Каспер.

В это же время был проведен внутренний энергоаудит. “Когда отчет об этом был представлен нашему руководителю службы эксплуатации оборудования, он установил, что наши показатели энергозатрат на тонну продукции могут быть значительно улучшены”, - продолжает Б.Каспер.

Одна из возможностей сократить расход средств, выявленная отчетом, была связана с потерями пролетного пара. Энергоаудит показал, что около 60% из 1 000 термодинамических конденсатоотводчиков, установленных на комбинате, были негерметичны, либо свободно пропускали пролетный пар. Так как большое количество отказов конденсатоотводчиков наблюдалось на паропроводах высокого давления, потери энергии были весьма ощутимыми.

Чтобы покончить с проблемами, возникающими из-за негерметичности и пропусков пролетного пара, “Вейерхеузер” выбрал путь замены склонных к отказам термодинамических конденсатоотводчиков конденсатоотводчиками с опрокинутым поплавком фирмы “Армстронг”. Эти конденсатоотводчики “Армстронг” идеально подходили для тяжелых условий эксплуатации, сложившихся на комбинате, когда в паропроводах происходит быстрое накопление примесей и других загрязнений. “Мы убедились, что конструкция конденсатоотводчиков с опрокинутым поплавком фирмы “Армстронг” обеспечивает хорошую ремонтопригодность и обладает высокой надежностью”, - отмечает Б.Каспер.

Ключевой фактор - знания
Заранее было установлено, что персонал, отвечающий за техническое обслуживание оборудования, нуждается в обучении. Кроме того, Б.Каспер считал логичным назначить одно лицо ответственным за осуществление программы технического обслуживания и ремонта конденсатоотводчиков. Он объяснил, что выбор было сделать не трудно.

“Ренди Хардисон, специалист с 23 - летним стажем работы на комбинате “Вейерхеузер”, отличался энергией и энтузиазмом, что было необходимо для такой работы. Кроме того, он фактически созрел для этой задачи. Действительно, значительную часть успехов, достигнутых в ходе выполнения нашей программы по конденсатоотводчикам, нужно отнести на счет инициативы Ренди.”
В то время, как недавно повышенный в должности механик по конденсатоотводчикам Р.Хардисон посещал семинар фирмы “Армстронг”, посвященный экономии энергии пара, местный представитель “Армстронг” раскрутил организацию программы 2-х недельного обучения примерно для четверти из 460 служащих отдела техобслуживания и ремонта комбината в Плимуте.

Отдел техобслуживания и ремонта, как объясняет Б.Каспер, считается чрезвычайно важным отделом комбината. “Так как на нашем предприятии характер производства непрерывный, техобслуживание и ремонт приобретают ключевое значение для обеспечения прибыльной работы. Мы предчувствовали насколько может быть важно, чтобы максимальное число наших работников получили нужные знания на семинаре по конденсатоотводчикам.”
Тем временем, участники семинаров представителей по энергоменеджменту пара активно впитывали эти знания. “Участники семинаров знают, что перед каждым из них стоит задача помогать экономить средства, и мы здесь осознали потенциал экономии в нашей собственной паро-конденсатной системе”, - отмечает Б.Каспер.

Вооружившись новыми знаниями о том, как работают конденсатоотводчики на их предприятии, первое, что они обнаружили, заключалось в том, что многие из установленных конденсатоотводчиков были неправильно подобраны. Трубопроводы возврата конденсата имели слишком малый диаметр, что привело к большому объему работ по их замене. Много конденсатоотводчиков было установлено в труднодоступных местах. “ Я думаю, - замечает Р.Хардисон, - они должны быть доступными, чтобы любой мог проверить и испытать как конденсатоотводчики, так и всю систему”.

Совершенствование учета помогает сберечь информацию.
Когда в марте 1987 года был дан старт главной программе инспекции и ремонта конденсатоотводчиков, старая система исправления формуляров о техобслуживании была преобразована в компьютерную систему. Ведущую роль в преобразовании системы взял на себя Р.Хардисон, на которого была возложена ответственность за ее модернизацию.

“Большое количество конденсатоотводчиков на нашем предприятии привело нас к мысли, что для упрощения учета необходимо ввести эту информацию в компьютер. Кроме того, нас впечатлила эффективность и простота “Программы предупредительного техобслуживания”, разработанная фирмой “Армстронг”, - отмечает Р.Хардисон.

По мере появления отчетов о работах по программе конденсатоотводчиков на комбинате “Вейерхеузер”, начала ясно вырисовываться экономия затрат. “Мы обнаружили, что наша программа по конденсатоотводчикам сама окупает себя”, - объясняет Р.Хардисон. “Возврат конденсата вырос с 50 до 63%. Сейчас мы работаем на 4 паровых котлах вместо 11, как это было всего три года назад. Плюс к этому, мы получаем со всей заводской системы сейчас на 3% больше конденсата, чем ранее”.
Чтобы экономить время и повысить производительность, Ренди Хардисон переделал обычный заводской автокар в специальную техничку для проведения техобслуживания и ремонта конденсатоотводчиков.

“Укротители энергии” - важные союзники.
Сотрудники отдела техобслуживания и ремонта - не единственные, кто вовлечен в работу по энергоменеджменту пара. Другие работники также уже стали осознавать важность энергосбережения благодаря появлению “укротителей энергии”. “Всякий раз, когда кто-нибудь замечает утечку пара, он связывается со мной и мы собираем комитет “укротителей энергии”, - объясняет Р.Хардисон. “Движение “укротителей энергии” возникло несколько лет назад на другом предприятии “Вейерхеузер”, но уже подхвачено здесь. Во время этих собраний я буду обычно рассказывать о том, как работает паро-конденсатная система и о том, как проверять конденсатоотводчики, а также буду помогать комитету решать проблемы, связанные с утечками пара”.

В дополнение к руководству заседаниями комитета “укротителей энергии”, Хардисон организовал серию своих собственных семинаров, называемых “Давайте поговорим о конденсатоотводчиках”. Каждые пару месяцев примерно 25 - 35 рабочих будут собираться на его одночасовые учебные семинары во время перерыва на ленч. На этих, совмещенных с ленчем, семинарах, посещение которых обязательно для всех работников комбината, Хардисон докладывает присутствующим обзор принципов работы конденсатоотводчиков. Все участники семинаров получают специальную кепку участника, а также экземпляр своеобразной комедии Р.Хардисона, вызывающей приятное удивление.

Приоритетное внимание отражается на финансовых итогах.
Инспектор отдела техобслуживания и ремонта Б.Каспер считает:
“Всем, кто по роду деятельности занимается управлением паро-конденсатными системами, могу посоветовать следующее:

Прежде всего назначьте одно лицо полностью ответственным за техобслуживание и ремонт конденсатоотводчиков и создайте условия, чтобы эта ответственность была его первейшим приоритетом.
- Во-вторых, обеспечьте этому лицу соответствующее обучение, инструменты и оборудование.
В нашем случае эти правила соблюдаются и мы получаем увеличение годовой прибыли предприятия благодаря обновленному отношению к управлению энергией пара. “Конечно, - сразу добавляет Б.Каспер, - ключевым фактором повышения прибыли являются знания. Зная, где ваша паро-конденсатная система может терять деньги, нужно представлять себе различные пути внедрения программ экономии пара. И фирма “Армстронг” доказала, что она является надежным партнером, поставляющим ту продукцию и те знания, в которых мы нуждаемся”.

Http://www.energycontrol.spb.ru/Appek.nsf/(sitetree)/DEEA11C767B81A7EC325708B004A90E9?OpenDocument