Как вычисляется ускорение при равноускоренном движении. Формулы прямолинейного равноускоренного движения

Когда на дороге происходит авария, специалисты измеряют тормозной путь. Зачем? Чтобы определить скорость движения автомобиля в начале торможения и ускорение при торможении. Все это нужно для выяснения причин аварии: или водитель превысил скорость, или были неисправны тормоза, или с автомобилем все в порядке, а виноват нарушивший правила дорожного движения пешеход. Как, зная время торможения и тормозной путь, определить скорость и ускорение движения тела?

Узнаём о геометрическом смысле проекции перемещения

В 7 классе вы узнали, что для любого движения путь численно равен площади фигуры под графиком зависимости модуля скорости движения от времени наблюдения. Аналогичная ситуация и с определением проекции перемещения (рис. 29.1).

Получим формулу для вычисления проекции перемещения тела за интервал времени от t: = 0 до t 2 = t. Рассмотрим равноускоренное прямолинейное движение, при котором начальная скорость и ускорение имеют одинаковое направление с осью OX. В этом случае график проекции скорости имеет вид, представленный на рис. 29.2, а проекция перемещения численно равна площади трапеции OABC:

На графике отрезок OAсоответствует проекции начальной скорости v 0 x, отрезок BC — проекции конечной скорости v x , а отрезок OC — интервалу времени t. Заменив данные отрезки соответствующими физическими величинами и учитывая, что s x = S OABC , получим формулу для определения проекции перемещения:

Формулу (1) применяют для описания любого равноускоренного прямолинейного движения.

Определите перемещение тела, график движения которого представлен на рис. 29.1, б, за 2 с и за 4 с после начала отсчета времени. Поясните ответ.

Записываем уравнение проекции перемещения

Исключим переменную v x из формулы (1). Для этого вспомним, что при равноускоренном прямолинейном движении v x = v 0 x + a x t. Подставив выражение для v x в формулу (1), получим:

Таким образом, для равноускоренного прямолинейного движения получено уравнение проекции перемещения:


Рис. 29.3. График проекции перемещения при равноускоренном прямолинейном движении — парабола, проходящая через начало координат: если a x > 0, ветви параболы направлены вверх (а); если a x <0, ветви параболы направлены вниз (б)

Рис. 29.4. Выбор оси координат в случае прямолинейного движения

Итак, график проекции перемещения при равноускоренном прямолинейном движении — парабола (рис. 29.3), вершина которой соответствует точке разворота:

Поскольку величины v 0 x и a x не зависят от времени наблюдения, зависимость s x (ί) является квадратичной. Например, если

можно получить еще одну формулу для вычисления проекции перемещения при равноускоренном прямолинейном движении:

Формулой (3) удобно пользоваться, если в условии задачи не идет речь о времени движения тела и не нужно его определять.

Выведите формулу (3) самостоятельно.

Обратите внимание: в каждой формуле (1-3) проекции v x , v 0 x и a x могут быть как положительными, так и отрицательными — в зависимости от того, как направлены векторы v, v 0 и a относительно оси OX.

Записываем уравнение координаты

Одна из основных задач механики — определение положения тела (координат тела) в любой момент времени. Мы рассматриваем прямолинейное движение, поэтому достаточно выбрать одну ось координат (например, ось OX), которую следует

направить вдоль движения тела (рис. 29.4). Из данного рисунка видим, что независимо от направления движения координату х тела можно определить по формуле:

Рис. 29.5. При равноускоренном прямолинейном движении график зависимости координаты от времени — парабола, пересекающая ось х в точке х 0

где х 0 — начальная координата (координата тела в момент начала наблюдения); s x — проекция перемещения.

поэтому для такого движения уравнение координаты имеет вид:

Для равноускоренного прямолинейного движения

Проанализировав последнее уравнение, делаем вывод, что зависимость х(ί) — квадратичная, поэтому график координаты — парабола(рис. 29.5).


Учимся решать задачи

Основные этапы решения задач на равноускоренное прямолинейное движение рассмотрим на примерах.

Пример решения задачи

Последовательность

действий

1. Внимательно прочитайте условие задачи. Определите, какие тела принимают участие в движении, каков характер движения тел, какие параметры движения известны.

Задача 1. После начала торможения поезд прошел до остановки 225 м. Какой была скорость движения поезда перед началом торможения? Считайте, что во время торможения ускорение поезда неизменно и равно 0,5 м/с 2 .

На пояснительном рисунке направим ось ОХ в направлении движения поезда. Так как поезд уменьшает свою скорость, то

2. Запишите краткое условие задачи. При необходимости переведите значения физических величин в единицы СИ. 2

Задача 2. По прямолинейному участку дороги идет пешеход с постоянной скоростью 2 м/с. Его догоняет мотоцикл, который увеличивает свою скорость, двигаясь с ускорением 2 м/с 3 . Через какое время мотоцикл обгонит пешехода, если на момент начала отсчета времени расстояние между ними было 300 м, а мотоцикл двигался со скоростью 22 м/с? Какое расстояние проедет мотоцикл за это время?

1. Внимательно прочитайте условие задачи. Выясните характер движения тел, какие параметры движения известны.

Подводим итоги

Для равноускоренного прямолинейного движения тела: проекция перемещения численно равна площади фигуры под графиком проекции скорости движения — графиком зависимости v x (ί):

3. Выполните пояснительный рисунок, на котором покажите ось координат, положения тел, направления ускорений и скоростей.

4. Запишите уравнение координаты в общем виде; воспользовавшись рисунком, конкретизируйте это уравнение для каждого тела.

5. Учитывая, что в момент встречи (обгона) координаты тел одинаковы, получите квадратное уравнение.

6. Решите полученное уравнение и найдите время встречи тел.

7. Вычислите координату тел в момент встречи.

8. Найдите искомую величину и проанализируйте результат.

9. Запишите ответ.

в этом состоит геометрический смысл перемещения;

уравнение проекции перемещения имеет вид:

Контрольные вопросы

1. С помощью каких формул можно найти проекцию перемещения s x для равноускоренного прямолинейного движения? Выведите эти формулы. 2. Докажите, что график зависимости перемещения тела от времени наблюдения — парабола. Как направлены ее ветви? Какому моменту движения соответствует вершина параболы? 3. Запишите уравнение координаты для равноускоренного прямолинейного движения. Какие физические величины связывает это уравнение?

Упражнение № 29

1. Лыжник, движущийся со скоростью 1 м/с, начинает спускаться c горы. Определите длину спуска, если лыжник проехал его за 10 с. Считайте, что ускорение лыжника было неизменным и составляло 0,5 м/с 2 .

2. Пассажирский поезд изменил свою скорость от 54 км/ч до 5 м/с. Определите расстояние, которое проехал поезд во время торможения, если ускорение поезда было неизменным и составляло 1 м/с 2 .

3. Тормоза легкового автомобиля исправны, если при скорости 8 м/с его тормозной путь — 7,2 м. Определите время торможения и ускорение автомобиля.

4. Уравнения координат двух тел, движущихся вдоль оси OX, имеют вид:

1) Для каждого тела определите: а) характер движения; б) начальную координату; в) модуль и направление начальной скорости; г) ускорение.

2) Найдите время и координату встречи тел.

3) Для каждого тела запишите уравнения v x (t) и s x (t), постройте графики проекций скорости и перемещения.

5. На рис. 1 представлен график проекции скорости движения для некоторого тела.

Определите путь и перемещение тела за 4 с от начала отсчета времени. Запишите уравнение координаты, если в момент времени t = 0 тело было в точке с координатой -20 м.

6. Два автомобиля начали движение из одного пункта в одном направлении, причем второй автомобиль выехал на 20 с позже. Оба автомобиля движутся равноускоренно с ускорением 0,4 м/с 2 . Через какой интервал времени после начала движения первого автомобиля расстояние между автомобилями будет 240 м?

7. На рис. 2 представлен график зависимости координаты тела от времени его движения.

Запишите уравнение координаты, если известно, что модуль ускорения 1,6 м/с 2 .

8. Эскалатор в метро поднимается со скоростью 2,5 м/с. Может ли человек на эскалаторе находиться в состоянии покоя в системе отсчета, связанной с Землей? Если может, то при каких условиях? Можно ли при этих условиях движение человека считать движением по инерции? Обоснуйте свой ответ.

Это материал учебника

Попытаемся вывести формулу для нахождения проекции вектора перемещения тела, которое двигается прямолинейно и равноускоренно, за любой промежуток времени.

Для этого обратимся к графику зависимости проекции скорости прямолинейного равноускоренного движения от времени.

График зависимости проекции скорости прямолинейного равноускоренного движения от времени

Ниже на рисунке представлен график, для проекции скорости некоторого тела, которое движется с начальной скорость V0 и постоянным ускорением а.

Если бы у нас было равномерное прямолинейное движение, то для вычисления проекции вектора перемещения, необходимо было бы посчитать площадь фигуры под графиком проекции вектора скорости.

Теперь докажем, что и в случае равноускоренного прямолинейного движения проекция вектора перемещения Sx будет определяться таким же образом. То есть проекция вектора перемещения будет равняться площади фигуры под графиком проекции вектора скорости.

Найдем площадь фигуры ограниченную осью оt, отрезками АО и ВС, а также отрезком АС.

Выделим на оси ot малый промежуток времени db. Проведем через эти точки перпендикуляры к оси времени, до их пересечения с графикос проекции скорости. Отметим точки пересечения a и c. За этот промежуток времени скорость тела поменяется от Vax до Vbx.

Если взять этот промежуток достаточно малым, то можно считать что скорость остается практически неизменной, а следовательно мы будем иметь на этом промежутке дело с равномерным прямолинейным движением .

Тогда можно считать отрезок ac горизонтальным, а abcd – прямоугольником. Площадь abcd будет численно равна проекции вектора перемещения, за промежуток времени db. Мы можем разбить на такие малые промежутки времени всю площадь фигуры OACB.

То есть мы получили, что проекция вектора перемещения Sx за промежуток времени, соответствующий отрезку ОВ, будет численно равна площади S трапеции ОACB, и будет определяться по той же формуле, что и эта площадь.

Следовательно,

  • S=((V0x+Vx)/2)*t.

Так как Vx=V0x+ax*t и S=Sx, полученная формула примет следующий вид:

  • Sx=V0x*t+(ax*t^2)/2.

Мы получили формулу, с помощью которой можем рассчитать проекцию вектора перемещения при равноускоренном движении.

В случае равнозамедленного движения формула примет следующий вид.

Равноускоренным движением называют такое движение, при котором вектор ускорения остается неизменным по модулю и направлению. Примером такого движения является движение камня, брошенного под некоторым углом к горизонту (без учета сопротивления воздуха). В любой точке траектории ускорение камня равно ускорению свободного падения . Таким образом, изучение равноускоренного движения сводится к изучению прямолинейного равноускоренного движения. В случае прямолинейного движения векторы скорости и ускорения направлены вдоль прямой движения. Поэтому скорость и ускорение в проекциях на направление движения можно рассматривать как алгебраические величины. При равноускоренном прямолинейном движении скорость тела определяется формулой (1)

В этой формуле – скорость тела при t = 0 (начальная скорость ), = const – ускорение. В проекции на выбранную ось х уравнение (1) запишется в виде: (2). На графике проекции скорости υ х (t ) эта зависимость имеет вид прямой линии.

По наклону графика скорости может быть определено ускорение a тела. Соответствующие построения выполнены на рис. для графика I Ускорение численно равно отношению сторон треугольника ABC : .

Чем больше угол β, который образует график скорости с осью времени, т. е. чем больше наклон графика (крутизна ), тем больше ускорение тела.

Для графика I: υ 0 = –2 м/с, a = 1/2 м/с 2 . Для графика II: υ 0 = 3 м/с, a = –1/3 м/с 2 .

График скорости позволяет также определить проекцию перемещения s тела за некоторое время t. Выделим на оси времени некоторый малый промежуток времени Δt. Если этот промежуток времени достаточно мал, то и изменение скорости за этот промежуток невелико, то есть движение в течение этого промежутка времени можно считать равномерным с некоторой средней скоростью, которая равна мгновенной скорости υ тела в середине промежутка Δt. Следовательно, перемещение Δs за время Δt будет равно Δs = υΔt. Это перемещение равно площади заштрихованной на рис. полоски. Разбив промежуток времени от 0 до некоторого момента t на малые промежутки Δt, можно получить, что перемещение s за заданное время t при равноускоренном прямолинейном движении равно площади трапеции ODEF. Соответствующие построения выполнены на рис. для графика II. Время t принято равным 5,5 с.

(3) – полученная формула позволяет определить перемещение при равноускоренном движении если ускорение не известно.

Если подставить в уравнение (3) выражение для скорости (2), то получаем (4) – эта формула используется для записи уравнения движения тела: (5).

Если выразить из уравнения (2) время движения (6) и подставить в равенство (3), то

Эта формула позволяет определить перемещение при неизвестном времени движения.

Самое важное для нас - это уметь вычислять перемещение тела, потому что, зная перемещение, можно найти и координаты тела, а это и есть главная задача механики. Как же вычислить перемещение при равноускоренном движении?

Формулу для определения перемещения проще всего получить, если воспользоваться графическим методом.

В § 9 мы видели, что при прямолинейном равномерном движении перемещение тела численно равно площади фигуры (прямоугольника), расположенной под графиком скорости. Верно ли это для равноускоренного движения?

При равноускоренном движении тела, происходящем вдоль координатной оси X, скорость с течением времени не остается постоянной, а меняется со временем согласно формулам:

Поэтому графики скорости имеют вид, показанный на рисунке 40. Прямая 1 на этом рисунке соответствует движению с «положительным» ускорением (скорость растет), прямая 2 - движению с «отрицательным» ускорением (скорость убывает). Оба графика относятся к случаю, когда в момент времени тело имело скорость

Выделим на графике скорости равноускоренного движения маленький участок (рис. 41) и опустим из точек а и перпендикуляры на ось Длина отрезка на оси численно равна тому малому промежутку времени, за который скорость изменилась от ее значения в точке а до ее значения в точке Под участком графика получилась узкая полоска

Нели промежуток времени, численно равный отрезку достаточно мал, то в течение этого времени изменение скорости тоже мало. Движение в течение этого промежутка времени можно считать равномерным, и полоска будет тогда мало отличаться от прямоугольника. Площадь полоски поэтому численно равна перемещению тела за время, соответствующее отрезку

Но на такие узкие полоски можно разбить всю площадь фигуры, расположенной под графиком скорости. Следовательно, перемещение за все время численно равно площади трапеции Площадь же трапеции, как известно из геометрии, равна произведению полусуммы ее оснований на высоту. В нашем случае длина одного из оснований трапеции численно равна длина другого - V. Высота же ее численно равна Отсюда следует, что перемещение равно:

Подставим в эту формулу вместо выражение (1а), тогда

Разделив почленно числитель на знаменатель, получим:

Подставив в формулу (2) выражение (16), получим (см. рис. 42):

Формулу (2а) применяют в том случае, когда вектор ускорения направлен так же, как и ось координат, а формулу (26) тогда, когда направление вектора ускорения противоположно направлению этой оси.

Если начальная скорость равна нулю (рис. 43) и вектор ускорения направлен по оси координат, то из формулы (2а) следует, что

Если же направление вектора ускорения противоположно направлению оси координат, то из формулы (26) следует, что

(знак «-» здесь означает, что вектор перемещения, так же как и вектор ускорения, направлен противоположно выбранной оси координат).

Напомним, что в формулах (2а) и (26) величины и могут быть как положительными, так и отрицательными - это проекции векторов и

Теперь, когда мы получили формулы для вычисления перемещения, нам легко получить и формулу для вычисления координаты тела. Мы видели (см. § 8), что, для того чтобы найти координату тела в какой-то момент времени надо к начальной координате прибавить проекцию вектора перемещения тела на ось координат:

(За) если вектор ускорения направлен так же, как и ось координат, и

если направление вектора ускорения противоположно направлению оси координат.

Это и есть формулы, позволяющие находить положение тела в любой момент времени при прямолинейном равноускоренном движении. Для этого нужно знать начальную координату тела его начальную скорость и ускорение а.

Задача 1. Водитель автомобиля, движущегося со скоростью 72 км/ч, увидел красный сигнал светофора и нажал на тормоз. После этого автомобиль начал тормозить, двигаясь с ускорением

Какое расстояние пройдет автомобиль за время сек после начала торможения? Какое расстояние пройдет автомобиль до полной остановки?

Решение. За начало координат выберем ту точку дороги, в которой автомобиль начал тормозить. Координатную ось направим по направлению движения автомобиля (рис. 44), а начало отсчета времени отнесем к моменту, в который водитель нажал на тормоз. Скорость автомобиля направлена так же, как ось X, а ускорение автомобиля противоположно направлению этой оси. Поэтому проекция скорости на ось X положительна, а проекция ускорения отрицательна и координату автомобиля нужно находить по формуле (36):

Подставляя в эту формулу значения

Теперь найдем, какое расстояние пройдет автомобиль до полной остановки. Для этого нам нужно знать время движения . Его можно узнать, воспользовавшись формулой

Так как в тот момент, когда автомобиль останавливается, его скорость равна нулю, то

Расстояние, которое пройдет автомобиль до полной остановки, равно координате автомобиля в момент времени

Задача 2. Определите перемещение тела, график скорости которого показан на рисунке 45. Ускорение тела равно а.

Решение. Так как сначала модуль скорости тела уменьшается со временем, то вектор ускорения направлен противоположно направлению . Для вычисления перемещения мы можем воспользоваться формулой

Из графика видно, что и время движения поэтому:

Полученный ответ показывает, что график, изображенный на рисунке 45, соответствует движению тела сначала в одном направлении, а затем на такое же расстояние в противоположном направлении, в результате чего тело оказывается в исходной точке. Подобный график может, например, относиться к движению тела, брошенного вертикально вверх.

Задача 3. Тело движется вдоль прямой равноускоренно с ускорением а. Найдите разность расстояний, проходимых телом за два следующих один за другим одинаковых промежутка времени т.

Решение. Примем прямую, вдоль которой движется тело, за ось X. Если в точке А (рис. 46) скорость тела была равна то его перемещение за время равно:

В точке В тело имело скорость и его перемещение за следующий промежуток времени равно:

2. На рисунке 47 изображены графики скорости движения трех тел? Каков характер движения этих тел? Что можно сказать о скоростях движения тел в моменты времени, соответствующие точкам А и В? Определите ускорения и напишите уравнения движений (формулы для скорости и перемещения) этих тел.

3. Пользуясь приведенными на рисунке 48 графиками скоростей трех тел, выполните следующие задания: а) Определите ускорения этих тел; б) составьте для

каждого тела формулу зависимости скорости от времени: в) в чем сходны и чем различаются движения, соответствующие графикам 2 и 3?

4. На рисунке 49 показаны графики скорости движения трех тел. По этим графикам: а) определите, чему соответствуют отрезки ОА, ОВ и ОС на осях координат; 6) найдите ускорения, с которыми движутся тела: в) напишите уравнения движения для каждого тела.

5. Самолет при взлете проходит взлетную полосу за 15 сек и в момент отрыва от зедлли имеет скорость 100 м/сек. С каким ускорением двигался самолет и какова длина взлетной полосы?

6. Автомобиль остановился у светофора. После того как загорелся зеленый сигнал, он начинает двигаться с ускорением и движется гак до тех пор, пока скорость его не станет равной 16 м/сек, после чего он продолжает движение с постоянной скоростью. На каком расстоянии от светофора окажется автомобиль через 15 сек после появления зеленого сигнала?

7. Снаряд, скорость которого равна 1 000 м/сек, пробивает стену блиндажа за и после этого имеет скорость 200 м/сек. Считая движение снаряда в толще стены равноускоренным, найдите толщину стены.

8. Ракета движется с ускорением и к некоторому моменту времени достигает скорости в 900 м/сек. Какой путь она пройдет в следующие

9. На каком расстоянии от Земли оказался бы космический корабль через 30 мин после старта, если бы он все время двигался прямолинейно с ускорением

На данном уроке мы с вами рассмотрим важную характеристику неравномерного движения - ускорение. Кроме того, мы рассмотрим неравномерное движение с постоянным ускорением. Такое движение еще называется равноускоренным или равнозамедленным. Наконец, мы поговорим о том, как графически изображать зависимости скорости тела от времени при равноускоренном движении.

Домашнее задание

Решив задачи к данному уроку, вы сможете подготовиться к вопросам 1 ГИА и вопросам А1, А2 ЕГЭ.

1. Задачи 48, 50, 52, 54 сб. задач А.П. Рымкевич, изд. 10.

2. Запишите зависимости скорости от времени и нарисуйте графики зависимости скорости тела от времени для случаев, изображенных на рис. 1, случаи б) и г). Отметьте на графиках точки поворота, если такие есть.

3. Рассмотрите следующие вопросы и ответы на них:

Вопрос. Является ли ускорение свободного падения ускорением, согласно данному выше определению?

Ответ. Конечно, является. Ускорение свободного падения - это ускорение тела, которое свободно падает с некоторой высоты (сопротивлением воздуха нужно пренебречь).

Вопрос. Что произойдет, если ускорение тела будет направлено перпендикулярно скорости движения тела?

Ответ. Тело будет двигаться равномерно по окружности.

Вопрос. Можно ли вычислять тангенс угла наклона, воспользовавшись транспортиром и калькулятором?

Ответ. Нет! Потому что полученное таким образом ускорение будет безразмерным, а размерность ускорения, как мы показали ранее, должно иметь размерность м/с 2 .

Вопрос. Что можно сказать о движении, если график зависимости скорости от времени не является прямой?

Ответ. Можно сказать, что ускорение этого тела меняется со временем. Такое движение не будет являться равноускоренным.