Бесконтактные измерительные приборы с оптическими системами. Средства измерения с оптическим и оптико-механическим преобразованием

Оптические измерительные приборы чрезвычайно разнообразны. По количеству типов оптических приборов их можно сопоставить с электроизмерительными. На самом деле, очень многие приборы из других видов измерения - из механики, из теплофизики, из физико-химии - в качестве оконечного каскада или в качестве первичного датчика имеют те или иные оптические детали.

С самого начала следует определить, что в дальнейшем изложении будет считаться оптическим прибором. Вообще оптическим считается метод или прибор, регистрирующий электромагнитное излучение, видимое человеческим глазом, т. е. электромагнитные колебания с длинами волн от 760 нм до 350 нм. Однако развитие науки о свете привело к тому, что под оптическим и задачам и стали понимать измерение в более длинноволновой области - инфракрасное излучение - и в более коротковолновой области - ультрафиолетовое излучение. Соответственно, расширилось число методов и приборов, которые являются прерогативой оптиков. Чтобы убедиться в этом, достаточно вспомнить, что в оптическом приборостроении и в оптических исследованиях последних десятилетий оптическая наука прирастала в основном крайними, т. е. инфракрасной (ИК) и ультрафиолетовой (УФ) областями спектра. Поэтому сейчас под оптическими приборами и методами подразумевают практически все, что «родом» из видимого человеческим глазом электромагнитного излучения.

Ограничиваясь тематикой и объемом изложения, мы будем полагать, что читатель знаком с основами физической и геометрической оптики. Во всяком случае, здесь нет возможности излагать суть таких явлений, как дифракция, интерференция, поляризация и др., равно как останавливаться на основных законах оптики, например на фотоэффекте, принципах работы лазеров, на законах излучения, на синхротронном излучении и т. д. Для более подробного знакомства с физикой оптических явлений здесь даны ссылки на учебный материал, специально посвященный данному конкретному разделу оптики.

Прежде чем перейти к конкретному изложению принципов действия оптических приборов, имеет смысл раскатегорировать их по измеряемым физическим величинам или по области применения, что зачастую является одним и тем же. С такой точки зрения оптические измерительные приборы можно разделить на классы, например так, как показано на схеме рис. 8.1
.

Фотометрические оптические приборы - это класс оптики для изменения световых потоков и величин, непосредственно связанных со световыми потоками: освещенности, яркости, светимости и силы света. Фотометры целесообразно разделять на традиционно оптические, измеряемые характеристики в которых имеют чувствительность, соответствующую чувствительности человеческого глаза, и так называемые фотометры энергетических фотометрических величин, т. е. те же характеристики безотносительно к чувствительности глаза человека. Естественно, что в энергетических фотометрах величины выражаются не в люменах, люксах, нитах, а в единицах механических:

Спектральные оптические приборы - огромный класс оптической техники, для которого общим является разложение электромагнитного излучения в спектр по длинам волн. Существуют спектроскопы - визуальные приборы, монохроматоры - приборы, выделяющие излучения на какой-либо фиксированной длине волны, полихроматоры, выделяющие излучение на нескольких длинах волн, спектрографы - регистрирующие весь спектр монохроматического излучения. Если в приборе кроме разложения излучения в спектр имеется возможность измерения каких-либо энергетических характеристик электромагнитного излучения, то такой прибор называется спектрофотометром или квантометром.

Интерферометрами называют приборы, в которых основной измеряемой характеристикой является не амплитуда световой волны и связанная с ней энергия, а фаза электромагнитного колебания. Именно такой подход позволил создать самые точные на данный момент средства измерения, реально позволяющие измерять величины с погрешностями в 11-12 знаке. Именно поэтому интерферометры применяются в основном для решения задач, требующих от приборов предельно высокой точности, например, в эталонах, в обслуживании уникальных научных программ, в реализации сверхчувствительных методов анализа состава вещества и т.п.

Другие классы оптических приборов, представленные на схеме рис. 8.1 не так обширны, как фотометры и спектрометры. Тем не менее они выделены вследствие того, что у них определяющим является специфическое физическое явление.

В поляриметрах используется такое волновое свойство света, как поляризация, т. е. определенная ориентация колебаний электромагнитной волны относительно направления распространения. Многие вещества обладают свойствами изменять направление поляризации. На этом принципе работают не только преобразователи для измерения магнитных величин, но и некоторые приборы для анализа состава веществ и материалов, например сахариметры.

Приборы для измерения показателя преломления твердых тел, жидкостей и газов. В них используется изменение направления пучка света на границе раздела двух сред. Эти приборы используются в качестве индикаторов в хроматографах, в многочисленных метеорологических приборах специального назначения, в газовом анализе и т. д.

Приборы для угловых измерений - в большинстве своем представляют собой зрительные трубы или лазеры, оптическая ось которых снабжена отсчетным угловым лимбом. Таким прибором можно измерять углы, последовательно наводя оптическую ось на два раздельных объекта. Сюда же можно отнести и оптические дальномеры, использующие измерения углов наблюдения одного и того же объекта двумя зрительными трубами. Гониометры широко применяются в топографии, в военной технике, в геодезических работах.

Измерительные микроскопы представляют собой приборы для увеличения видимых размеров (или углов наблюдения) различных объектов и измерения размеров увеличенных деталей. В разделе «Механические измерения» рассматривались два типа такой измерительной техники: это измеритель длин ИЗА и микроскоп Линника - прибор для измерения шероховатости поверхностей. Наиболее массовыми приборами такого типа являются обычные микроскопы, снабженные окуляр-микрометром. Это позволяет оценивать размеры объема при непосредственном наблюдении его через микроскоп. Такими приборами широко пользуются врачи, биологи, ботаники и вообще все специалисты, работающие с небольшими объектами.

Приборы для измерения собственного теплового излучения тел называются пирометрами (от слова «пиро» - огонь). В этих приборах используются законы излучения нагретых тел - закон Планка, закон Стефана-Больцмана, закон Вина, закон Релея-Джинса. Этот класс приборов рассмотрен нами в разделе о температурных измерениях, где пирометры рассматриваются как средства неконтактного измерения температуры.

Термин «фотометрия» образован от двух греческих слов: «фос» - свет и «метрео» - измеряю. В измерительных приборах, регистрирующих область спектра, видимую человеческим глазом (λ = 350 - 760 нм) важно не только измерить энергетические характеристики, но и изготовить прибор таким образом, чтобы его чувствительность к излучению соответствовала бы чувствительности человеческого глаза. Такие приборы измеряют оптические величины в оптических единицах, основной из которых является кандела (свеча). Сила света определяется как энергия потока, видимого человеческим глазом, т. е. механическая энергия, умноженная на видность глаза, распространяющая в единичном телесном угле, т. е.

(8.1)

Если сила света выражена в канделах, а телесный угол в стерадианах, то световой поток выразится в люменах.

Освещенность какой-либо поверхности, перпендикулярной к направлению распространения света, есть поверхностная плотность светового потока, т. е.

Связь освещенности и силы света дается фундаментальным законом фотометрии, гласящем, что освещенность от точечного источника изменяется обратно пропорционально квадрату расстояния от источника до освещаемой поверхности, т. е.

(8.3)

где φ - угол между нормалью к поверхности и направлением распределения света. Освещенность выражается в люменах. Если поставлена задача охарактеризовать фотометрические параметры самосветящегося объекта: нити накаливания лампы, экрана монитора, колбы люминесцентной лампы и т. д., измерять следует величину, называемую светимостью:

где dS - элемент светящейся поверхности. Светимость в оптических единицах выражается в люменах с квадратного метра (лм/м 2).

Еще одной распространенной оптической физической величиной, измеряемой на практике, является яркость. Яркость определяется для светящегося объекта как сила света с единицы поверхности, перпендикулярной лучу:


Рис. 8.2. К определению яркости: а) самосветящаяся поверхность; б) поверхность, освещенная сторонним источником света

Для поверхности, освещенной сторонним источником света, яркость определяется как отношение освещенности поверхности к телесному углу, опирающемуся на эту поверхность, и имеющему вершину в точке наблюдения:

Еще одно определение яркости относится к лучу света безотносительно к тому, является он исходящим от самосветящейся поверхности или падает на какую-либо поверхность. Яркость элементарного луча определяется как освещенность, которую он создает на перпендикулярной к нему поверхности в единичном телесном угле, который он заполняет:

(8.7)

В тех случаях, когда создаются приборы, работающие в инфракрасном или в ультрафиолетовом диапазонах, вместо оптических единиц, как уже указывалось, используются механические единицы, т. е. мощность измеряется в ваттах, энергетическая освещенность - в ваттах на квадратный метр, энергетическая сила света - в ваттах на стерадиан, энергетическая яркость - в ваттах на метр квадратный на стерадиан. В главе «Метрология» указано, что связь между относительными фотометрическими единицами осуществляется использованием понятия механического эквивалента света и функции видности человеческого глаза. Напомним, что механический эквивалент света есть мощность светового потока на длине волны 555 мкм, равная 1 Ватту механической энергии. В оптических единицах эта мощность равна 683 люмена, т. е.

(8.8)

В приборах для измерения силы света - свечемерах - используется закон измерения освещенности в зависимости от расстояния. В этом случае сила света какого-либо источника измеряется сравнением (компарированием освещенности, создаваемой этим источником с освещенностью, создаваемой источником, с известной силой света I,). Схема подобного прибора дана на рис. 8.3.

Перемещением экрана и лампы добиваются равенства сигналов с фотоприемника при освещении обеими лампами. Затем измеряют расстояние r 1 и r 2 , соответствующие этому положению. Сила света источника I 2 находится из очевидного равенства:

(8.9)

Существует достаточное количество различных реализаций этого метода как по компарированию ламп с различным спектральным составом излучения, так и с различными интенсивностями. Вместо фотоприемника часто используют какое-либо визуальное устройство, и равенство освещенностей фиксируют без измерений фототоков.

Тот же самый принцип в отношении измерения силы света мощных источников или при большом расстоянии от источника света до фотоприемника реализован в так называемом телеметрическом методе. Сущность этого метода основана на выделении и измерении светового потока ΔФ, распространяющегося от источника в пределах малого телесного угла Δω и определения таким образом силы света в соответствующем направлении. Рисунок 8.4
поясняет сущность телеметрического метода.

Излучение источника И, силу света которого надо определить, падает на положительную линзу Л, оптическая ось которой совпадает с направлением измеряемой силы света. В фокальной плоскости F устанавливается диафрагма D с площадью отверстия S, равной δ. Телесный угол, в пределах которого лучи, падающие на линзу Л, достигнут фотоэлемента, равен Δω=δ/f 2 , где f - фокусное расстояние линзы. Фототек в цепи фотоэлемента должен быть пропорционален световому потоку ΔФ, используемому в пределах постоянного для данного прибора телесного угла Δω. В этом случае фототек равен

(8.10)

где К - постоянный коэффициент, I - искомая сила света. Коэффициент К определяется при градуировке, и шкала электроизмерительного прибора комбинируется непосредственно в единицах силы света - в канделах или в ваттах на стерадиан.

Для измерения светового потока проводят измерения освещенности внутренней поверхности белого матового шара. Если в фотометрическом шаре между источником света, поток от которого нужно измерить, и фотоприемником установить экран Э, то освещенность в точке расположения фотоприемника пропорциональна полному световому потоку:

(8.11)

где ρ - коэффициент отражения внутренней поверхности шара; r - радиус шара; а - фотометрическая константа шара - коэффициент пропорциональности между величиной светового потока от источника и освещенностью поверхности фотоприемника. В большинстве практических случаев коэффициент а определяется экспериментально измерениями светового потока источника с известными значениями полного светового потока.

Измерители освещенности - люксметры - являются наиболее массовыми оптическими приборами, используемыми на практике. Именно этими приборами контролируется уровень освещенности во всех случаях - в помещении, на улице, при выполнении каких-либо технологических измерений и т.д.

Люксметры по принципиальной схеме являются наиболее простыми из всех фотометрических приборов. Фотоэлектрические люксметры состоят, как правило, из фотоэлемента и чувствительного электроизмерительного прибора. Необходимым условием правильности показаний люксметра является соответствие спектральной чувствительности фотоприемника функции видности человеческого глаза, т. е. максимальная чувствительность должна быть в желто-зеленой области со спадом в ультрафиолетовую (до 380 нм) область и в инфракрасную (более 760 нм) область. Поскольку площадь фотоприемника строго фиксирована, сигнал с него пропорционален освещенности, и шкала прибора, соответственно, может быть проградуирована в люксах.

Инфракрасного излучения. Поскольку связь общей энергии теплового излучения с температурой дается законом Стефана-Больцмана, показания спектрофотометров зависят от того, какой источник света освещает данный объект. В большинстве случаев приборы градуируются для освещения лампами накаливания, т. н. Источник типа А. Если объект освещен другими типами источников, например люминесцентными лампами или ртутными дуговыми лампами, то показания по шкале люксметра можно исправить с помощью поправочного коэффициента N, на который нужно умножить результат, чтобы найти правильное значение измеряемой освещенности. Значения поправочного коэффициента N для наиболее часто используемых источников света приведены в табл. 8.1.

Таблица 8.1

Поправочные коэффициенты для измерения
энергетических потоков источников света
с различными цветовыми температурами

Цветовая температура источника света, К 2360 2856 3100 3250 3400 4800 5800
Поправочный коэффициент, N 1,003 1,00 0,99 0,975 0,973 0,843 0,78

Для измерения яркости в соответствии с 8.5 - 8.7 необходимо измерить энергию светового пучка, ограниченного двумя диафрагмами. Для реализации этого яркомер содержит, как правило, ахроматический объектив, проектирующий изображение объекта в плоскость диафрагмы D, за которой устанавливают фотоприемник. Схема яркомера дана на рис. 8.5.

Прибор, построенный по такой схеме, реагирует на световой поток, исходящий с поверхности определяемого размера dS под определенным углом dω. Следовательно, регистрируемый фототек будет пропорционален яркости объекта, и прибор может быть проградуирован в единицах яркости. На практике яркомеры имеют визирное устройство, позволяющее видеть глазом тот участок поверхности, яркость которого измеряется.

При измерении яркости протяженных самосветящихся объектов можно воспользоваться прибором для измерения освещенности - люксметром,- расположив его непосредственно на светящейся поверхности. В этом случае фотоприемник соберет все излучение объекта, исходящее в телесном угле в 2π стерадиан, и яркость самосветящейся поверхности будет отличаться от освещенности на 2π, т. е.

Этим способом часто пользуются на практике. Существуют также промежуточные приборы, проградуированные в единицах яркости, хотя по своей схеме они идентичны обычным люксметрам.

Ни для кого не секрет, что применение оптических линий связи вошло в нашу повседневную жизнь очень и очень плотно. Трудно представить компанию по предоставлению телекоммуникационных услуг, которая бы не применяла в качестве линий связи оптическое волокно. Несомненно, исключения из правил бывают, но это скорее уже пережитки прошлого, и рано или поздно придется применять оптическое волокно для передачи данных.

Сейчас на рынке существует просто огромный выбор продукции для построения оптических линий связи: это и кабель для различных условий прокладки, и кроссовое оборудование, и различные аксессуары. Казалось бы, покупай, строй и на этом все закончится. Но не тут-то было!

Главным элементом оптических сетей является оптический кабель, а точнее - оптическое волокно, которое в нем находится. От качества монтажа при строительстве зависит надежность и долговечность сети, а также минимальные затраты на аварийно-восстановительные работы. Возникает вполне логичный вопрос «А как же контролировать качество оптических линий?». Вот здесь уже не обойтись без целого класса оборудования, называемого измерительным оборудованием для оптических сетей.

В первую очередь к ним можно отнести: оптические рефлектометры (OTDR), оптические тестеры, измерители оптической мощности, источники лазерного излучения, источники видимого лазерного излучения (дефектоскопы), идентификаторы активных волокон и т.д.
Если Вам все же предстоит работать с оптическим волокном, то необходимо ознакомится с основными видами измерительного оборудования. В данной статье мы попытаемся детально разобраться с принципом действия данных устройств, покажем типичные схемы включения и некоторые нюансы.

А зачем это нужно?

Многие могут задаться вопросом «А зачем это нужно?», ведь оно и так работает! Несомненно, каждый решает для себя сам, стоит ли приобретать измерительное оборудование. Но те, кому довелось столкнуться с проблемами при построении, эксплуатации или ремонте оптических сетей ответят вам однозначно - без него не обойтись.
В первую очередь строительные организации в процессе строительства оптических линий, как и везде, должны контролировать качество проделанной работы, здесь уж точно «на глаз» не скажешь правильно и качественно ли сделаны работы. При подготовке к сдаче оптических сетей (ввод в эксплуатацию) также необходимо применять измерительное оборудование для контроля различных характеристик (например, уровень оптического сигнала, затухание в линейном тракте, потери на сварных соединениях и др.). В случае с ремонтом при авариях вообще сложно будет что-то сделать, не зная точного места повреждения.
Перейдем более конкретно к сути вопроса, а именно: какие характеристики оптических линий необходимо знать в первую очередь и с помощью каких приборов их можно изменять.
Первая и, наверное, самая главная характеристика - это затухание (измеряется в дБ) в оптическом тракте на рабочей длине волны. Данная величина показывает, насколько будет затухать (ослабевать) оптический сигнал при прохождении через данную линию. Ее еще называют «Вносимое затухание» или «Вносимое ослабление», англоязычные варианты «Attenuation» или «Insertion loss».
Основные элементы, которые вносят затухание в оптический тракт - это непосредственно оптическое волокно (характеризуется потерями на единицу длины, дБ/км), сварные соединения, механические разъемы, оптические делители.
Вторая немаловажная характеристика - это обратное отражение («Optical Return Loss» или «Back Reflection»). Эта величина характеризует значение оптической мощности, которая отражается и обратно к источнику излучения, выражается также в дБ.
Источником обратного отражения могут быть механические разъемы, трещины в волокне, а также свободный конец оптического разъема.

Чистота - залог успеха

Прежде чем приступить к измерениям в волоконной оптике, следует запомнить очень важное правило – оптические коннекторы необходимо содержать в чистоте. Поскольку диаметр сердцевины волокна составляет порядка 9 мкм, невооруженным глазом заметить загрязнения невозможно. Но загрязнения присутствуют всегда – это факт. И совершенно не важно где и как хранился разъем, старый или новый, в любом случае на торце ферулы будут загрязнения. Это, в первую очередь, повлияет на точность измерений, которые мы будем обсуждать ниже. Размеры потерь, которые могут вносить «грязные» разъемы, могут колебаться в очень широких пределах и достигать нескольких дБ. Также загрязнения увеличивают значения обратного отражения, что крайне не желательно при передаче АМ сигнала кабельного телевидения.
Очистка поверхностей оптических разъемов может проводиться различными методами. Самый простой и экономичный - это безворсовая салфетка , смоченная в чистом спирте. Следует отметить, что после протирки влажной салфеткой необходимо протереть сухой для устранения разводов. Один из самых удобных методов - это применение специальных безворсовых чистящих лент , при этом достигается быстрая и удобная очистка разъемов.

С помощью данного устройства проводится быстрая и качественная очистка торцевой поверхности ферулы от различных загрязнений, подходит для самых различных типов коннекторов: SC, FC, LC, ST, MU.

Процесс очистки выполняется буквально в два действия. Сначала необходимо открыть защитную шторку и, плотно прижав торцевую поверхность разъема к чистящей ленте, провести вдоль направляющих сначала от себя, а потом на себя. Для контроля чистоты поверхности можно применить специальный микроскоп с 200-кратным увеличением.

Источники видимого лазерного излучения

Это, пожалуй, самое простое устройство, представляет собой источник красного света (650 нм), излучение которого вводится в оптическое волокно. Главным назначением данного устройства является локальное выявление повреждений различного типа (трещины, изгибы, некачественные сварки и т.д.). В месте повреждения будет наблюдаться яркое свечение. Типичное расстояние, при котором можно применить данное устройство, составляет 3-5 км.

На следующей фотографии показаны дефекты оптического волокна в пигтейле. Они подсвечиваются красным светом и их легко обнаружить даже при ярком дневном свете. Это могут быть микротрещины или другие локальные повреждения в волокне, вызванные механическими повреждениями; но в любом случае дальше использовать этот пигтейл нежелательно. Следует обратить внимание, что внешне пигтейл выглядит совершенно нормально, но стоит применить источник видимого излучения - и все дефекты сразу же проявляются.
Данные приборы незаменимы при монтажных работах в кроссовом оборудовании, проверке работоспособности оптических патч-кордов с различными коннекторами (SC, FC, ST), пигтейлов, для идентификации нужных волокон путем «подсвечивания» их и т.д.
Основные преимущества: компактность, простота в использовании, универсальность, а самое главное - небольшая стоимость.


Источники лазерного излучения

Немного о конструкции данных приборов. Источник лазерного излучения представляет собой устройство, основным элементом которого является полупроводниковый лазер (лазерный диод), их количество может быть разным. Самые распространенные - это длины волн 1310 нм и 1550 нм, поскольку на этих волнах в основном происходит передача оптического сигнала. Могут существовать разнообразные варианты комбинаций различных лазеров, некоторые источники лазерного излучения могут иметь в своей конструкции источник видимого лазерного излучения, о которых говорилось выше.

Основным же предназначением данных устройств является генерация лазерного излучения на фиксированной длине волны для измерения потерь в оптических линиях. Типичное значение уровня оптической мощности -7дБм. К дополнительным функциям источников лазерного излучения можно отнести генерацию не только непрерывного сигнала, но и модулированного с заданной частотой (например, 270 Гц, 1 кГц, 2 кГц) для идентификации волокон, автоматическое выключение, уровень заряда батареи и т.д.

Выходной порт излучателя, как правило, имеет адаптер FC/UPC.

Некоторые модели этих приборов могут оснащаться встроенным излучателем красного света (отдельный порт) для визуального определения дефектов.

Измерители оптической мощности

Данный прибор регистрирует уровень входной оптической мощности и отображает значение на экране. Основным элементом устройства является фотоприемник.

Обычно используется широкополосный фотоприемник. Это означает, что он регистрирует всю оптическую мощность, приходящую на него в диапазоне 800 – 1800 нм. Выставляя измеряемую длину волны (калиброванную) мы получаем численное значение в дБм или Вт. Если в оптическом тракте будут присутствовать одновременно излучения на нескольких длинах волн, то прибор отобразит некую суммарную величину мощности.

Типичными значениями измеряемых длин волн (калиброванных) являются все те же 1310 и 1550 нм, но также могут быть и другие: 850, 980, 1300, 1490 нм и т.д. Динамический диапазон измерителя (оптические мощности, которые он может измерять) зависит от применяемого фотоприемника, типичное значение для InGaAs составляет порядка 60-70 дБ. В зависимости от конкретных применений можно подобрать оптимальный прибор. Для измерений в телекоммуникационных сетях подойдут измерители мощности с большей чувствительностью фотодетектора (+6…-70 дБм), а для оптических сетей кабельного телевидения важно измерение достаточно больших мощностей (+26…-50 дБм). Как и источники излучения, устройство работает от встроенной батареи, имеет подсветку экрана, функцию автоматического выключения, сохранения результатов и много другого. Входной оптический порт, как правило, имеет адаптер FC/UPC. Одной из важнейших функций данного устройства является возможность измерять потери оптического сигнала относительно произвольного начального уровня (более детально смотрите ниже).

Оптический тестер

Это устройство представляет собой источник излучения и измеритель оптической мощности в одном корпусе. Преимущества и недостатки, по сравнению с отдельными устройствами, каждый решает сам для себя, учитывая специфику применения данного устройства.

  • компактность;
  • независимая работа источника и измерителя;
  • аналогичные функциональные возможности источника и измерителя.

Общий вид оптического тестера MULTITEST MT3204С

Перейдем к вопросу практического применения этих устройств. Первая и самая главная задача сводится к измерению затухания сигнала в оптической линии. Для этого нам необходимы как источник излучения, так и измеритель оптической мощности.

Измерение потерь методом вносимых потерь

Поскольку измеритель определяет только уровень мощности, то для измерения потерь (затухания) в оптической линии нужно сделать два измерения. Сначала – определить уровень мощности на выходе источника излучения (опорный уровень), а потом – уровень мощности сигнала, прошедшего через тестируемую линию. Разность этих значений (в дБм) или их логарифмическое отношение (в Вт) и составит потери в линии.

Опорный уровень определяется при непосредственном соединении источника и измерителя соединительным шнуром (патч-кордом). При измерении выставляем соответствующую длину волны на источнике и измерителе. После получения результата переходим в режим измерения относительных потерь (кнопка dB), на экране измерителя появится значение 00.00 dB. Это позволяет не заниматься пересчетом, а при следующем измерении прямо получить значение затухания на экране измерителя.

Определение опорного уровня

При втором измерении, мы подключаем после шнура интересующий нас участок, на котором нам необходимо произвести измерение потерь, и сразу же получим на экране значение потерь в дБ.

Измерение потерь в линии методом вносимых потерь

Данный метод измерения очень прост, практичен, не требует длительного времени и дорогого оборудования. При этом достигается небольшая погрешность измерений, порядка 0,1 дБ. При отсутствии измерительного источника излучения для измерения затухания может использоваться любой оптический передатчик с длиной волны, которая есть в вашем измерителе мощности, имеющем режим непрерывного излучения (CW).

Если вам нужно проводить измерения потерь, когда оба конца оптической линии находятся в одном месте (например, бухта кабеля), то удобно будет воспользоваться оптически тестером. Принцип измерения таким прибором аналогичен с совместной работой источника и измерителя. Ниже приведена типичная схема измерения с помощью оптического тестера.

Измерение тестером опорного уровня и установка условного нуля

Измерение вносимых потерь с применением оптического тестера

На экране оптического тестера отображаются вносимые потери исследуемым образцом волокна. С помощью оптического тестера (а также пары приборов источник + измеритель) можно измерять вносимые потери не только линейных участков волокна, а также оптических делителей, механических соединений и т.д.

Измерение мощности в оптических сетях

Кроме потерь в линии измеритель мощности позволяет определять уровень оптической мощности в отдельных точках оптической сети. Например, существует оптическая сеть кабельного телевидения, и нам необходимо измерять уровень оптического сигнала на входе оптического приемника. Для этого мы в работающей сети (оптический передатчик включен) подключаем измеритель в нужном месте, выставляем длину волны, на которой происходит передача сигнала, и измеряем уровень сигнала. В результате данного измерения получаем некоторое значение в дБм. Если данное значение соответствует допустимому входному уровню оптического приемника и совпадает с расчетным значением по проекту, значит потери в оптическом тракте (оптический передатчик - оптический приемник) находятся в допустимых пределах (типичное значение входного уровня от -7 дБм до +3 дБм в зависимости от типа оптического приемника).

Более того, если есть возможность измерить уровень сигнала не только на входе приемника, но и на выходе оптического передатчика, то можно достаточно точно оценить потери в оптическом тракте.

Измерение уровня оптического сигнала в кабельном телевидении

Примечание: В сетях кабельного телевидения применяются оптические разъемы с угловой полировкой (APC), это нужно учитывать, поскольку измерители оптической мощности, как правило, имеют полировку типа UPC. В этом случае необходимо применять комбинированные оптические шнуры для предотвращения соединения коннекторов с различными полировками.

PON тестер

Следует отметить отдельный тип устройств для тестирования полностью пассивных оптических сетей (PON сети). Тестирование производится путем включения прибора в оптическую линию (в разрыв), с одновременным сканированием на трех длинах волн - восходящего потока (от абонента к станции) на длине волны 1310 нм, и нисходящих потоков (от станции к абонентам) - 1490/1550 нм, что экономит время и дает наиболее полную картину измерения. Основным отличием в сравнении с измерителями оптической мощности является наличие оптических фильтров и отдельных фотодетекторов для каждой измеряемой длинны волны.

Измерения могут отображаться в различных единицах - дБм или Вт.

В данном приборе предусмотрена функция сохранения результатов измерений во внутренней памяти прибора с возможностью дальнейшего анализа данных па ПК. А также очень полезная функция автоматического выключения, что позволит значительно увеличить время работы прибора от батареи.

PON тестер может применяться как при вводе PON сети в эксплуатацию для контроля уровней оптической мощности, так и при проведении ремонтно-восстановительных работ, а также для мониторинга сети.

Детально о применении PON тестера можно ознакомиться в статье «Измерения в пассивных оптических сетях (PON)» .

Идентификатор активных волокон

Внешний вид устройства

На рисунке выше представлен компактный прибор для обнаружения активных (наличие оптического излучения) оптических волокон MULTITEST MT3306A . Устройство обеспечивает быстрый неразрушающий способ определения наличия и направления распространения оптического сигнала в одномодовых волокнах. Прибор позволяет без отключения приемопередающей аппаратуры определить наличие сигнала в волокнах и его направление, а также оценить оптическую мощность. Если в качестве сигнала применяется модулированное излучение источника 270 Гц, 1 кГц или 2 кГц - идентификатор также определяет частоту модуляции. Принцип действия заключается в регистрации оптического сигнала в месте макроизгиба. Для универсальности предусмотрены сменные насадки под различные диаметры (волокно, пигтейлы и патч-корды).

С точки зрения практического применения это устройство очень удобно при поиске «активных» и «темных» волокон в оптических кроссах и муфтах, где используется много волокон и большая вероятность случайного разрыва соединения.

Проведение измерений с помощью оптического рефлектометра

Описанные выше методы измерений позволяют измерять уровень оптических потерь в линии, но обнаружить конкретное место повреждения в случае аварийной ситуации с их помощью невозможно. Единственным выходом из этой ситуации является применение оптического рефлектометра (OTDR) .

В рамках данной статьи постараемся выделить основные моменты при проведении измерений с помощью OTDR, уделим внимание практическим вещам, и не будем углубляться в теоретические основы.

Итак, какие измерения можно проводить с помощью рефлектометра:

  • позволяет за один цикл измерений одновременно определить целый ряд основных параметров оптического волокна: его длину, величину затухания на километр, наличие мест неоднородностей, их характер и расстояние до них, потери в соединителях, местах сварки и т.д. без проведения подготовительных работ;
  • проведение большого количества измерений с одного конца оптического волокна, в отличие от оптических тестеров.

Как и любой метод измерений, рефлектометрия также имеет и свои проблемные стороны:

  • высокие требования к вводу излучения в тестируемое волокно;
  • время для получения рефлектограммы с относительно неплохой точностью составляет не менее 30 секунд;
  • относительно высокая стоимость измерительного оборудования.

Принцип действия рефлектометра заключается в посылании в тестируемое волокно короткого оптического импульса. Из-за отражений от различных неоднородностей происходит образование обратного потока (обратное рассеяние). Рефлектометр измеряет временную задержку сигнала и уровень отраженного излучения. На основе этих данных строит рефлектограмму, представляющую собой график зависимости потерь в волокне от расстояния.
Мы не будем вдаться в подробности метода обработки результатов измерений, а рассмотрим уже готовый результат измерений, покажем, что отображается на рефлектограмме.

Неоднородности в оптическом волокне, показанные на рефлектограмме

Выше на рисунке представлена модель рефлектограммы с обозначением неоднородностей, которые могут встречаться в волокне.

На какие же характеристики рефлектометра следует обращать внимание при выборе модели?

Основной параметр любого рефлектометра - это динамический диапазон. Этот параметр характеризует диапазон между уровнем передачи и минимальным уровнем приема сигнала (как правило, при соотношении сигнал/шум = 1). Типичное среднее значение этого параметра составляет 34-36 дБ. Для измерений в коротких линиях могут использоваться модели с динамическим диапазоном 28-32 дБ, а для протяженных участков или для сетей с большим затуханием в пассивных элементах (PON, разветвленные сети КТВ) – до 40-45 дБ и больше.

Каждый рефлектометр имеет такую характеристику как мертвая зона – расстояние на рефлектограмме после неоднородности, на котором нельзя проводить измерения. Самое первое событие, которое будет присутствовать на любой рефлектограмме - это отражение от входного разъема. Поскольку этот разъем находится в непосредственной близости к фотоприемнику, отражение от него будет «ослеплять» фотоприемник. Эта область рефлектограммы и попадает в мертвую зону.

Влияние мертвой зоны на рефлектометрические измерения

Если очень важно провести измерения и увидеть на рефлектограмме буквально первый метр исследуемой трассы, применяется так называемая «компенсационная катушка» или «согласующая катушка» - название может быть разным, но смысл остается прежним. Она представляет собой отрезок оптического волокна определенной длины, как правило, от 100 м до 1 км. Благодаря этому устройству вся «мертва зона» попадает на длину этого волокна, после которого мы видим все начало измеряемой трассы. Если возникает необходимость увидеть и самый последний оптический разъем, тогда необходимо в конце линии также установить так называемую «приемную катушку». Это такой же отрезок волокна, компенсирующий мертвую зону при отражении сигнала от дальнего конца волокна. При проведении измерений с такими дополнительными катушками наша оптическая линия будет находиться в середине рефлектограммы, что позволяет нам с уверенностью проверять ее работоспособность.

Рефлектограмма с применением согласующей и приемной катушкой

Различные модели рефлектометров могут иметь очень много различных дополнительных возможностей. Например, функцию обнаружения наличия излучения в волокне (активное волокно), подключения тестируемого к входному оптическому разъему рефлектометра, наложение нескольких рефлектограмм, двусторонний анализ, различные функции оповещения и предупреждения.

К достоинствам некоторых моделей можно отнести встроенный источник излучения, источник видимого излучения, измеритель оптической мощности и т.д., но все это непосредственно влияет на стоимость, и совсем не в меньшую сторону.

При использовании рефлектометра очень часто происходит ситуация, когда оператор производит коммутацию оптических разъемов с различной полировкой (UPC-APC), что категорически недопустимо. В первую очередь это приведет к повреждению поверхности ферулы входного оптического разъема рефлектометра, а во-вторых, о достоверности измерений уже и говорить не приходится. Для предотвращения таких ситуаций необходимо применять различные комбинированные оптические шнуры (патч-корды) с различными типами полировок на концах. Не будет лишним напомнить, что абсолютно все оптические адаптеры (разъемы) имеют конечное число подключений, это означает, что со временем происходит ухудшение параметров соединения. Применение коммутационного шнура на выходе с оптического разъема рефлектометра позволит Вам значительно увеличить время работы данного прибора без ремонта. Также не следует забывать о чистоте оптических коннекторов: невооруженным глазом загрязнений не видно, но они всегда присутствуют, даже если оптический патч-корд или пигтейл Вы только что распечатали из упаковки. Недостаточно чистый коннектор, подключенный к рефлектометру, способен внести сильные искажения в картинку рефлектограммы, т.к. прибор реально работает с очень слабыми отраженными сигналами.

Определитель повреждения оптической линии

Одну из важнейших задач рефлектометрии - определение расстояния до места повреждения - можно успешно реализовать с помощью более простого и, соответственно, более дешевого прибора – определителя повреждений оптической линии (Fiber Ranger). Такой прибор работает по принципу OTDR: посылает зондирующие импульсы в линию и детектирует отраженную мощность. Однако он не производит серьезную математическую обработку сигнала, не строит рефлектограмму, а просто показывает расстояние до места сильного отражения оптической мощности (до обрыва, до конца волокна и т.д.). Результат измерений прибор показывает на экране в метрах.

Прибор очень полезен при эксплуатации оптической сети, например, когда важно быстро определить место повреждения. Fiber Ranger предельно прост в использовании, обладает хорошей точностью – от одного до нескольких метров - и может отображать значения расстояний до 8 событий (например, промежуточные некачественные разъемные соединения на оптической линии, сильные изгибы волокна в кассетах и т.п.). Устройство имеет встроенный лазерный излучатель красного света (650 нм) для визуального обнаружения повреждений.

На сегодняшний день предоставление качественных услуг в сфере телекоммуникаций является одним из главных критериев. Компания ДЕПС всегда поможет подобрать именно то измерительное оборудование, которое идеально подойдет к особенностям вашей сети, дабы обеспечить ей надежную и долговечную работу.

Отдел волоконно-оптических технологий и кабельных сетей компании ДЕПС

Оптико-механические измерительные приборы. Эти приборы находят широкое применение в измерительных лабораториях и в цехах для измерения размеров калибров, плоскопараллельных концевых мер длины, точных изделий, а также для настройки и проверки средств активного и пассивного контроля. Эти приборы основаны на сочетании оптических схем и механических передач. К оптико-механическим измерительным приборам относятся: пружинно-оптические измерительные головки (оптикаторы), оптиметры, ультраоптиметры, длиномеры, измерительные машины, интерферометры и ряд других приборов.



Рис. 2.25. Оптиметр: а - вертикальный; б - горизонтальный




Рис. 2.26. :


7 - окуляр; 2 - зеркало; 3 - трехгранная призма; 4 - стеклянная пластинка; 5- призма полного отражения; 6 - измерительный стержень; 7 - зеркало поворотное; в - объектив

Состоит из измерительной головки, называемой трубкой оптиметра, и вертикальной или горизонтальной стойки. В зависимости от вида стойки оптиметры подразделяют на вертикальные (например, ОВО-1, или ИКВ) (рис. 2.25, а) и горизонтальные (например, ОГО-1, или ИКГ) (рис. 2.25, б). Выпускают также горизонтальные и вертикальные проекционные оптиметры (ОГЭ-1 или ОВЭ-02). У последних отсчет результата измерения производится по шкале, проецируемой на экран. Вертикальные оптиметры предназначены для измерений наружных размеров деталей, а горизонтальные - для измерения как наружных, так и внутренних размеров.


В оптической схеме оптиметров использованы принципы автоколлимации и оптического рычага. Принцип действия трубки оптиметра показан на рис. 2.26. Лучи от источника света направляются зеркалом 2 в щель трубки и, преломляясь трехгранной призмой 3, проходят через шкалу, имеющую 200 делений, нанесенных на плоскость стеклянной пластинки 4. Пройдя шкалу, луч попадает на призму полного отражения 5 и, отразившись от нее под прямым углом, направляется на объектив 8 и зеркало поворотное 7. Качающееся зеркало пружиной прижимается к измерительному стержню 6. При перемещении стержня 6, опирающегося на измеряемую деталь, зеркало 7 поворачивается на угол а вокруг оси, проходящей через центр опорного шарика, что вызывает отклонение отраженных от зеркала 7 лучей на угол 2а. Отраженный пучок лучей объективом превращается в сходящийся пучок, который дает изображение шкалы. При этом шкала смещается в вертикальном направлении относительно неподвижного указателя на некоторую величину, пропорциональную измеряемому размеру. Изображение шкалы наблюдается в окуляр 1, как правило, одним глазом, что утомляет контролера. Для обеспечения отсчета на окуляр 1 надевают специальную проекционную насадку, на экране которой можно наблюдать изображение шкалы обоими глазами. Основные метрологические характеристики оптиметров см. в табл. 2.9.


(рис. 2.27, а) состоит из измерительной головки и вертикальной или горизонтальной стойки. Схема работы длиномера показана на рис. 2.27, б. Конструкция длиномера соответствует принципу Э.Аббе, т. е. основная шкала является продолжением измеряемой детали 3. В пиноли 5 закреплен измерительный наконечник 4, входящий в соприкосновение с измеряемой деталью 3. Сила тяжести пиноли 5 уравновешена противовесом 1, который перемещается внутри масляного демпфера 2. Пиноль 5 соединена с противовесом стальной лентой 9, перекинутой через блоки, причем измерительная сила длиномера определяется разностью масс пиноли 5 и противовеса 1. Эта сила регулируется с помощью грузовых шайб 8. Отсчеты по стеклянной шкале 6, освещаемой источником света S, производят с помощью отсчетного микроскопа 7 со спиральным нониусом.


В настоящее время все большее распространение получают длиномеры с цифровым отсчетом, на табло которых высвечивается непосредственно измеряемый размер.


Основные метрологические характеристики оптических длиномеров см. в табл. 2.9.


Таблица 2.9. Основные метрологические характеристики оптико-механических приборов

Наименование и тип прибора

Цена деления шкалы, мкм

Пределы измерений по шкале, мкм

Пределы допускаемой погрешности на любом участке шкалы в пределах 100 делений, мкм

Наибольшее измерительное усилие (колебание измерительного усилия), Н

Вариация показаний, мкм

Оптикаторы ГОСТ 28798-90:

Улътраоптиметры ИКП-2

Оптические длиномеры:

Интерферометр мод. 264

(вертикальный)

1,5 ± 0,10 (0,02)

1,5 ± 0,10 (0,02)

1,5 ± 0,10 (0,02)




Рис. 2.27. Оптический длиномер [а) и схема его работы (б) :


1 - противовес; 2 - масляный демпфер; 3 - измеряемая деталь; 4 - измерительный наконечник; 5 - пиноль; 6 - стеклянная шкала; 7 - отсчетный микроскоп; 8 - грузовые шайбы; 9 - стальная лента; S - источник света

Измерительные машины (одно-, двух- и трехкоординатные) предназначены для контроля сложных корпусных деталей, деталей значительных длин, измерения расстояний между осями отверстий, лежащих в одной или разных плоскостях, контроля параметров плоских профильных шаблонов в прямоугольных и полярных координатах. Двух- и трехкоординатные измерительные машины позволяют получать цифровой отсчет с автоматической выдачей результатов измерений на ЭВМ с последующим применением полученных программ в станках с ЧПУ для обработки аналогичных деталей (обработка по моделям). Более подробно измерительные машины рассмотрены в гл. 3.


Интерферометры относятся к весьма точным оптико-механическим приборам. Они применяются в основном для проверки концевых мер длины, размеров и формы особо точных изделий и основаны на использовании явления интерференции световых волн. Интерферометры для линейных измерений подразделяются на контактные (ИКПВ - вертикальные, ИКПГ - горизонтальные) и бесконтактные. Контактные интерферометры имеют одинаковые интерференционные трубки с возможностью регулирования цены деления от 0,05 до 0,2 мкм.


В трубке интерферометра (рис. 2.28) свет от лампы 1 направляется конденсором 2 через диафрагму 3 на разделительную полупрозрачную пластину 6.




Рис. 2.28. :


1 - лампа; 2 - конденсор; 3 - диафрагма; 4 - шторка; 5 - поворотное зеркало; 6 - полупрозрачная пластина; 7 - объектив; 8 - сетка; 9 - механизм перемещения окуляра; 10 - окуляр; 11 - компенсатор; 12 - зеркало; 13 - измерительный стержень; 14 - объект измерения

Часть лучей, пройдя через полупрозрачную пластину 6 и компенсатор 11, отразится от зеркала 12, закрепленного на верхнем конце измерительного стержня 13, и через компенсатор 11 вновь вернется к полупрозрачной пластине 6. Другая часть пучка света, отразившись от рабочей поверхности разделительной полупрозрачной пластины 6, попадает на поворотное зеркало 5 и после отражения также возвратится к полупрозрачной пластине 6. Рис. 2.29. Вертикальный контактный интерферометр:




Рис. 2.29. :


1 - кронштейн; 2 - кремальера; 3 - стойка; 4 - основание; 5 - винт; 6 - винт микроподачи; 7 - стол; 8 - теплозащитный экран; 9 - хомут трубки; 10 - трубка интерферометра

Таким образом, на рабочей поверхности полупрозрачной пластины 6 обе части пучка света интерферируют при небольшой разности хода. Объектив 7 проектирует интерференционную картину полос равной толщины в плоскость сетки 8. Интерференционные полосы и нанесенную на сетку шкалу наблюдают через окуляр 10.


Интерференционные полосы равной толщины образуются в результате поворота зеркала 5 на небольшой угол относительно поверхности зеркала 12. При освещении белым светом на фоне шкалы видна одна черная (ахроматическая) полоса и по обе стороны от нее несколько окрашенных полос убывающей интенсивности. Черная полоса служит указателем при отсчетах по шкале, имеющей по 50 делений в обе стороны от нуля, который смещается пропорционально перемещению измерительного стержня 13.


Вертикальный контактный интерферометр (рис. 2.29) имеет жесткое литое основание 4 и стойку 3. По направляющей стойки может перемещаться с помощью кремальеры 2 кронштейн 1, несущий трубку интерферометра 10. На хомуте трубки 9 закреплен теплозащитный экран 8. Стол 7 можно перемещать в вертикальном направлении винтом микроподачи 6 и стопорить в установленном положении винтом 5.


Основные метрологические характеристики интерферометров см. в табл. 2.9.


В последнее время отечественная промышленность стала выпускать бесконтактные лазерные интерферометры с цифровым отсчетом. Они позволяют измерять абсолютным методом детали больших размеров (до 60 м и более) с высокой производительностью и точностью. Цена деления таких приборов составляет от 0,1 до 0,01 мкм; погрешность измерения составляет 0,5 мкм на 1 м. Принципиальная схема одной из конструкций бесконтактного лазерного интерферометра представлена на рис. 2.30.




Рис. 2.30. :


1 - источник лазерного луча; 2 - неподвижное зеркало; 3 - пластина; 4 - V-образный рефлектор; 5 - основание рефлектора; 6 - измерительный стол; 7 - основание измерительного стола; 8 - неподвижное зеркало; 9- приемник; 10 - основание; 11 - показывающий прибор; 12 - корпус

Таблица 2.10. Основные метрологические показатели микроскопов

Тип микроскопа

Верхние пределы измерений, мм

Диапазон измерений плоских углов,

Линейное увеличение объективов визирного микроскопа

Цена деления шкалы барабанов микрометрических головок, мм

Цена деления шкалы наклона линии центров

Максимальный диаметр проверяемого изделия, мм

Цена деления шкалы угломерной головки

Предел основной допускаемой погрешности микроскопа в диапазоне измерений, мкм

в продольном направлении

в поперечном направлении

1; 3; 5; 10; 20; 40х

ИМЦ 100x50, А

1; 3; 5; 10; 20; 40х

0...25 мм ± 3 мкм

1; 3; 5; 10; 20; 40х

0...50 мм ± 5 мкм

ИМЦ 150x50, А

1; 1,5; 3,0; 5,0х

0... 100 мм ± 6 мкм

1; 1,5; 3,0; 5,0х

ИМЦЛ 160x80, Б

10; 15; 30; 50х

10; 15; 30; 50х

Поступающий от источника лазерного луча 1 пучок света полупрозрачной пластиной 3 делится на два потока. Один направляется на неподвижное зеркало 2 и, отразившись от него, возвращается к пластине 3. Другой, проходящий сквозь пластину 3, попадает на неподвижное зеркало 8. Отразившись от неподвижного зеркала 8 и V-образного рефлектора 4, пучок возвращается к пластине 3, где интерферирует с первым пучком.


При помощи лазерных интерферометров проверяют двух- или трехкоординатные измерительные машины, микроскопы, прецизионные станки и другие точные механизмы.


Оптические измерительные приборы .


Эти приборы нашли применение в измерительных лабораториях для абсолютных и относительных измерений бесконтактным методом различных изделий сложного профиля (резьб, шаблонов, кулачков, фасонных режущих инструментов) и малых габаритных размеров, для точных измерений длин, углов, радиусов. Эти приборы построены на оптических схемах. К наиболее распространенным оптическим измерительным приборам относятся: микроскопы (инструментальный, универсальный, проекционный), проекторы, оптические длиномеры и угломеры, делительные головки, столы и др.


Инструментальные и универсальные микроскопы предназначены для абсолютных измерений углов и длин различных деталей в прямоугольных и полярных координатах. В соответствии с ГОСТ 8074-82 выпускают микроскопы с микрометрическими измерителями двух типов: типа А - без наклона головки и типа Б - с наклоном головки. У микроскопов ИМ 100x50, А; ИМ 150x50, Б предусмотрен отсчет по шкалам микрометрических головок 25 мм и применение концевых мер длины, тогда, как микроскопы ИМЦ 100x50, А; ИМЦ 150x50, А; ИМ 150x50, Б; ИМЦЛ 160x80, Б оснащены цифровым отсчетом.


Универсальные измерительные микроскопы отличаются от инструментальных большим диапазоном измерений и повышенной точностью. В них вместо микрометрических измерителей применены миллиметровые шкалы с отсчетными спиральными микроскопами.


Основные метрологические характеристики указанных микроскопов представлены в табл. 2.10.




Рис. 2.31. Микроскоп инструментальный модели ММИ [а], его отсчетное устройство (б), оптическая схема микроскопа [в) :


1 - визирный микроскоп; 2 - стойка; 3 - винт; 4 - лампа подсветки; 5 и 12 - маховики; 6 и 8 - микрометрические винты; 7 - основание; 9 - измерительный стол; 10 - шариковые направляющие; 11- объектив; 13 - кронштейн; 14 - кольцо; 15 - тубус; I - миллиметровая шкала; II - круговая шкала


Несмотря на конструктивные различия инструментальных и универсальных микроскопов принципиальная схема измерения во всех микроскопах общая - визирование различных точек контролируемой детали, перемещаемых для этого по взаимно перпендикулярным направлениям, и измерение этих перемещений посредством отсчетных устройств. Для обеспечения лучшего визирования микроскопы снабжают сменными объективами различной степени увеличения.


В качестве примера рассмотрим конструкцию (рис. 2.31, а) и принцип измерения микроскопа инструментального модели ММИ. На массивном чугунном основании 7 в двух взаимно перпендикулярных направлениях на шариковых направляющих 10 перемещается измерительный стол 9 с помощью микрометрических винтов 6 и 8. Для отсчета перемещений на гильзе, скрепленной с метрической гайкой, имеется миллиметровая шкала I (рис. 2.31, б), а на барабане, связанном с микрометрическим винтом, - круговая шкала II с 200 делениями (на рис. 2.31, б показание микрометра равно 29,025). Объектив 11 с тубусом 15 установлен на кронштейне 13, который перемещается в вертикальном направлении по стойке 2. Стойка 2 с помощью маховика 5 может наклоняться у микроскопов типа Б в обе стороны для установки микроскопа под углом подъема измеряемой резьбы. Имеется лампа подсветки 4. Маховик 12, перемещающий кронштейн 13, служит для фокусировки микроскопа, причем установленное положение фиксируется винтом 3. Для точного фокусирования микроскопа вращают рифленое кольцо 14, при этом тубус 15 смещается по цилиндрическим направляющим кронштейна. К верхней части тубуса крепится сменная угломерная окулярная головка с визирным микроскопом 1 и отсчетным устройством.


Оптическая схема микроскопа представлена на рис. 2.31, в. Измеряемая деталь АБ рассматривается через объектив ОБ микроскопа. Изображение детали АБ получается действительным, обратным и увеличенным.


Глаз наблюдателя через окуляр ОК видит мнимое, обратное и еще раз увеличенное окуляром изображение детали А2Б2.


Проекторы предназначены для контроля или измерения деталей сложного контура. Проектор состоит из объектива, дающего увеличенное изображение контролируемого изделия, и экрана, на котором оно рассматривается или сравнивается с сетками или предельными контурами. Проекторы бывают с экранами, работающими в проходящем и отраженном свете. Основные метрологические характеристики этих приборов представлены в табл. 2.11.


Оптические делительные головки (рис. 2.32, а, б) служат для измерения углов, а также для разметки и нанесения делений на деталях при обработке. Прибор состоит из корпуса 8, внутри которого в подшипниках помещен шпиндель 9, отсчетного микроскопа 11 с нониусами, переднего центра 6 для установки детали, задней бабки 12 и станины 13. Поворот шпинделя отсчитывается предварительно по шкале 14, а. точно - по стеклянной шкале с помощью отсчетного микроскопа, которая жестко закреплена на шпинделе (рис. 2.32, в). Ось шпинделя может быть установлена в любое положение в пределах между горизонталью и вертикалью. Отсчет углов в этом случае ведут по шкале 14. Основные метрологические характеристики оптических делительных головок типа ОДГЭ см. в табл. 2.11.

Таблица 2.11. Основные метрологические характеристики оптических приборов

Наименование и тип прибора

Цена деления основной шкалы (нониуса)

Цена деления отсчетного устройства

Увеличение отсчетного микроскопа

Поле зрения

Пределы показаний шкалы

Пределы измерений прибором

Предельные погреш­ности прибора (отсчет­ного устройства)

Проекторы измерительные (ГОСТ 19795-82):

Линейной:

Дискретного цифрового отсчета:

В продольном

0 ... 100 мм, в

поперечном

вертикальном

Оптические делительные головки (ТУ 3.3.199 - 80):

Основного лимба

±(1 + sina/2) ±

± (2 + 2pisina/2)

±(5 / 5pisina/2)

Оптический угломер

Минутной шкалы 5"

Автоколлиматоры визуальные (ТУ 3.3.1495 - 84):

Минутной:

Секундной шкалы:

Предел разрешающей способности

Оптические круглые столы предназначены для точных угловых измерений или поворотов на требуемые углы деталей, которые из-за Своей массы, формы и размеров не могут быть установлены в центрах или на оправках оптической делительной головки. Оптические круглые столы могут применяться также для точной разметки деталей по окружности или как точное приспособление для обработки деталей в полярной системе координат.


Для измерения наружных и внутренних углов применяют различные оптические угломеры . Величина отсчета по шкале равна 10", а допустимая погрешность ±5".


Наиболее точными угломерными приборами являются приборы, основанные на применении автоколлимационных зрительных труб. Одним из представителей таких приборов является автоколлиматор .


Он предназначен для измерения углов, измерения прямолинейности и плоскостности направляющих, а также для определения взаимного углового расположения осей и плоскостей изделий в пространстве. Кроме визуальных автоколлиматоров бывают автоколлиматоры с фотоэлектрической регистрацией результатов, например автоколлиматор АФ-2, предназначенный для измерения угловых перемещений с точностью 1",


Автоколлиматоры с фотоэлектрической регистрацией по сравнению с визуальными обеспечивают более высокую точность и скорость измерений. Основные характеристики некоторых автоколлиматоров см. в табл. 2.11.





Рис. 2.32. Оптическая делительная головка (а), ее схема (б) и стеклянная шкала (в] :


1 - тубус; 2 - лампа подсветки; 3, 4 и 74 - шкалы; 5 - поводок; В - передний центр; 7 - червячное колесо; 8- корпус; 9 - шпиндель; 10 - полусфера; 11 - микроскоп; 12 - задняя бабка; 13 - станина


В последнее время в условиях возрастающей сложности контролируемых изделий находят все более широкое применение измерительные двухкоординатные системы. Они позволяют без переустановки изделия проводить более сложные измерения его угловых и линейных размеров в прямоугольной системе координат. К этим приборам относятся измерительные микроскопы, измерительные проекторы и измерительные двухкоординатные машины.


Измерительные двухкоординатные машины (ИДМ) появились как результат естественного развития измерительных микроскопов и проекторов. Мерами в них служат штриховые или концевые меры длины, а также прецизионные измерительные винты. Эти машины характеризуются использованием высокоточных оснований, опор, направляющих и приводов для перемещения стола с изделием или измерительной головки. Результаты измерений в современных ИДМ выводятся на ЭВМ, чем достигается значительное повышение производительности измерений.


Основные метрологические характеристики оптико-механических двухкоординатных машин, их преимущества, недостатки и область применения представлены в табл. 2.12.


Таблица 2.12. Основные метрологические характеристики оптико-механических измерительных двухкоординатных машин

Тип прибора

Пределы измерений, мм

Погршность измерения

Инерционность, с

Преимущества

Недостатки

Область применения

Измеритель ный микроскоп

х = 0...70 у = 0...50

1 мкм; 10 мкм; 6"

Легко переоснащаемый визуальный измерительный микроскоп для работы в проходящем и отраженном свете

Небольшое поле зрения (от 2... до 6 мм) в зависимости от увеличения

Лаборатории и производство, линейные и угловые измерения наружных и внутренних размеров

Инструментальный проекционный микроскоп

х= 0...150 у = 0...75

Можно вести наблюдения либо через окуляр, либо по экрану проектора как в отраженном, так и в проходящем свете

Дороже измерительного микроскопа

Измерительные лаборатории, измерение калибров, резьб, зубчатых колес, шаблонов, изделий сложной формы

Универсальный измерительный микроскоп

х = 0...200 у = 0...100

0,2 мкм; 1 мкм; 30"

Высокая точность, удобство контроля резьбовых калибров-пробок, легкая переоснащаемость

Большие масса и габаритные размеры, настольный прибор

Измерительные лаборатории, линейноугловые измерения наружных и внутренних размеров

Оптические приборы для измерения параметров шероховатости поверхности (ГОСТ 9847 - 79) основаны на принципе одновременного преобразования профиля поверхности и предназначены для измерения параметров Rmax; Rz; S по ГОСТ 2789-73. Стандартом устанавливаются следующие типы приборов: ПТС - приборы теневого сечения; ПСС - приборы светового сечения; МОМ - микроскопы однообъективные муаровые; МИИ - микроскопы интерференционные, действие которых основано на двухлучевой интерференции света; МПИ - микроскопы-профилометры интерференционные, действие которых основано на интерференции света с образованием полос равного хроматического порядка.



Рис. 2.33. :
а - оптическим методом светового сечения; б - с помощью двухлучевого интерферометра; в - рефлектометрическим методом; 1 - фотоприемник (окуляр); 2 - линза; 3 - объект измерения; 4 - объектив; 5 - осветитель


Диапазоны измерений параметров шероховатости для указанных типов приборов следующие: ПТС - Rz\ S - 0,2... 1,6 мм; Rmax-40...320 мкм; МИИ - Rz; Rmax - 0,05…0,8 мкм; S - 0,002…0,05 мм; ПСС - Rz\ Rmax - 0,5 ...40 мкм; S - 0,002 ...0,5 мм; МПИ - Rz\ Rmax - 0,05…0,8 мкм; MOM - Rz\ Rmax - 0,8...40 мкм; S- 0,0005... 0,5 мм.


Оптический метод светового сечения (рис. 2.33, а) позволяет наблюдать в окуляр 1 сильно увеличенный профиль неровностей и, измеряя их с помощью шкал окулярного микрометра, определять Ra и Rz.


С помощью двухлучевого интерферометра (рис. 2.33, б) измеряют разность длин путей двух пучков света, отраженных от разных участков исследуемой поверхности.


Оптический прибор, построенный по схеме, изображенной на рис. 2.33, в, реализует рефлектометрический метод измерения и автоматизирует процесс измерения, обеспечивая получение интегрального значения высоты неровностей.

Из их числа наиболее распространены оптиметры вертикальные и горизонтальные. Эти приборы используют для относительных измерений с применением блоков концевых мер длины.

Измерительное устройство - трубка оптиметра, основанная на сочетании принципа автоколлимации с качающимся зеркалом.

В основу принципа автоколлимации положено свойство объектива превращать пучок расходящихся лучей в пучок параллельных лучей, а затем собирать этот пучок, отраженный плоским зеркалом, в том же фокусе объектива.

Рис. 6.12. Ход лучей в оптической системе: а - при расположении на главной оптической оси; б - при смещении источника света относительно главной оптической оси; в - при отражении от плоскости зеркала, расположенного под углом

Если источник света О (рис. 6.12, а) находится в фокусе объектива, то луч, совпадающий с главной оптической осью, пройдет объектив без преломления, а остальные лучи после преломления в объективе пройдут параллельно главной оптической оси. Встретив на пути зеркальную плоскость, перпендикулярную к главной оптической оси, лучи отразятся от нее и вновь соберутся в фокусе объектива О.

Если источник света О расположен не в фокусе объектива, а в фокальной плоскости на расстоянии а от главной оптической оси (рис. 6.12, б ), то параллельные лучи, выйдя из объектива и встретив на своем пути зеркало, расположенное под углом 90° к главной оптической оси, отразятся от него под углом у к этой оси, пройдут через объектив и сойдутся в точке О", симметричной точке О.

Если же источник света расположен в фокусе объектива, но зеркальная плоскость находится под углом а к главной оптической оси (рис. 6.12, в), то лучи, отразившись, пройдут под углом 2сх к главной оптической оси и, преломившись в объективе, сойдутся в точке Оотстоящей от точки О на расстоянии t = Ftg2a.

В конструкции трубки оптиметра используют все описанные схемы.

Рис. 6.13.

  • 1 - шкала; 2 - призма; 3 - зеркало; 4 - призма; 5 - объектив;
  • 6 - зеркало; 7 - неподвижная опора; 8 - измерительный стержень

Оптическая схема трубки оптиметра показана на рис. 6.13.

Лучи света от источника направляются осветительным зеркалом 3 и призмой 2 на шкалу 1, на которой нанесено ±100 делений с интервалом с = 0,08 мм, расположенную в общей фокальной плоскости объектива 5 и окуляра. Пройдя через шкалу, лучи попадают в призму 4 и, преломившись под углом 90°, проходят через объектив 5. Выйдя из объектива параллельным пучком, лучи отразятся от зеркала 6 и возвратятся в фокальную плоскость объектива со смещением в горизонтальном направлении относительно главной оптической оси. Горизонтальное смещение используют для того, чтобы наблюдать изображение шкалы отдельно от самой шкалы. Зеркало 6 имеет три точки опоры: две неподвижные 7 и одну подвижную - измерительный стержень 8.

Перемещение измерительного стержня 8 на величину S вызовет поворот зеркала 6 на угол а, что повлечет за собой поворот отраженных от зеркала лучей на угол 2а. При этом изображение шкалы в общем случае переместится в вертикальном направлении относительно неподвижного индекса на величину t. В оптиметре используется оптический рычаг, малым плечом которого является расстояние а от точки опоры качающего зеркала 6 до оси измерительного стержня 8, большим - фокусное расстояние объектива F. Особенность оптического рычага - передаточное отношение равно удвоенному отношению его плеч:

где S - перемещение измерительного стержня, равное atgcx.

У оптиметра F = 200 мм и плечо а = 5 мм. Если принять из-за малости углов tg2a = и tga = а, то

т.е. при перемещении измерительного стержня на 1 мкм изображение шкалы переместится на интервал деления (с = 80). Величина k = 80 - собственное передаточное отношение рычажно-оптической системы оптиметра. Общее передаточное отношение оптиметра при 12-крат- ном увеличении окуляра

Предназначен для измерения линейных и угловых размеров методом непосредственной оценки.

В современной практике измерения чаще всего применяют микроскоп малой модели типа ИТ и большой модели БМИ.


Рис. 6.14.

  • 1 - основание; 2 - микрометрический винт поперечного перемещения; 3 - винт поворота стола; 4 - рамка с центрами; 5 - центр; 6 - тубус;
  • 7 - съемная окулярная головка; 8 - винт (маховичок); 9 - колонка; 10 - стопорный винт; 11 - ось вращения колонки; 12 - осветительное устройство; 13 - винт наклона колонки; 14 - микрометрический винт продольного перемещения; 15 - стол; 16 - рукоятка

Видимый интервал деления с" собственно составит 960 мкм. Следовательно, цена деления оптиметра

Инструментальный микроскоп малой модели (рис. 6.14) состоит из основания прибора 1, колонки 9, съемной окулярной головки 7, тубуса 6, передвигающегося вверх и вниз по колонке 9, стола 15, имеющего поперечное и продольное перемещение с помощью микрометрических винтов 2 и 14 соответственно и осветительного устройства 12.

Колонка 9 может поворачиваться вокруг горизонтальной оси 11 с помощью винтов 13, отклоняясь от вертикального положения в обе стороны на 10°. Грубое перемещение тубуса по колонке проводится от руки. Он фиксируется в любом положении стопорным винтом 10. Для точной установки по высоте служит маховичок 8.

Продольное и поперечное перемещение стола отсчитывают по шкалам микрометрического винта, аналогичного микрометру. Предел измерения по микровинтам - 25 мм. Предел измерения в продольном направлении можно увеличить, перемещая стол рукояткой 16, дополнительно на 50 мм за счет блока концевых мер, устанавливаемого между специальными упорами. Пределы измерения по угловой шкале 0-360°.

На столе микроскопа помещается рамка 4 с центрами 5 для установки цилиндрических деталей с центровыми отверстиями. Для измерения бесцентровых деталей рамка снимается, и тогда применяется V-образная призма. Плоские детали устанавливают непосредственно на столе, который может в незначительных пределах поворачиваться вокруг оси винтом 3 в основном при настройке прибора.

В инструментальном микроскопе применяется съемная универсальная окулярная головка 7, имеющая два окуляра - визуальный Б и отсчета угловых величин А. В окуляре Б наблюдаются изображение теневого контура измеряемого объекта и штриховая сетка, нанесенная на стеклянном диске, который вращается при помощи специального маховика. Угол поворота штриховой сетки отсчитывается по шкалам (видимым в окуляре А): подвижной градусной и неподвижной минутной с ценой деления 1 минута.

Интерферометры, основанные на использовании явления интерференции световых волн, подразделяют на контактные и бесконтактные, вертикальные и горизонтальные.

Контактные интерферометры выпускают с переменной ценой деления от 0,05 до 0,2 мкм. Перед измерением прибор настраивают на цену деления г. Для этого задают цену деления произвольным количеством полос К в монохроматическом свете и определяют количество делений шкалы т, в которые надо уложить К полос, чтобы получить заданную цену деления. Рекомендуется при цене деления 0,05; 0,1 и 0,2 мкм выбирать число К = 8; 16 и 32 соответственно:

где X - длина световой волны (обычно замаркирована на интерферометре).

Применяют интерферометры в основном для поверки концевых мер и для точных измерений.

Рис. 6.15.

  • 1 - лампа; 2 - конденсор; 3 - диафрагма; 4 - светофильтр;
  • 5 - зеркало; 6 - пластина; 7 - объектив; 8 - полость сетки;
  • 9 и 10 - окуляр; 11 - компесатор; 12 - зеркало

Оптическая схема трубки интерферометра показана на рис. 6.15. Свет от лампы 1 направляют конденсором 2 через диафрагму 3 на полупрозрачную разделительную пластину 6. Часть света пройдет через пластину 6, компенсатор 11 на зеркало 12 и, отразившись от зеркала, вернется снова на пластину 6. Другая часть пучка света направится на зеркало 5 и после отражения тоже возвратится к пластине. Встретившись на пластине 6, обе части пучка света интерферируют при небольшой разности хода. Объектив 7 проецирует в полость сетки 8 интерференционные полосы, которые вместе с нанесенной на сетке шкалой наблюдаются через систему окуляра 9 и 10. При включении светофильтра 4 наблюдается интерференционная картина, черная полоса которой служит указателем при отсчете по шкале.

Для объективной оценки качества строительных работ и успешной последующей эксплуатации ВОЛС строительные и обслуживающие организации должны располагать современным измерительным оборудованием, позволяющим проводить измерения с достоверными результатами.

Парк контрольно-измерительного оборудования многообразен и представлен отечественным и импортным оборудованием. Выбор требуемого измерительного оборудования зависит от конкретной задачи с учетом стоимости прибора (табл. 5).

Таблица 5. Сопоставление диагностических процедур и измерительных приборов.

ИСТОЧНИК ИЗЛУЧЕНИЯ

Используется вместе с оптическим ваттметром или идентификатором волокон для проверки целостности сварных швов, определения общих оптических потерь и идентификации волокон. Примерная цена: 500-2500 $.

ИЗМЕРИТЕЛЬ ОПТИЧЕСКОЙ МОЩНОСТИ

Оптические измерители мощности (Optical Power Meter - ОРМ) используются для измерения оптической мощности сигнала, а также для измерения затухания в кабеле (рис.22). Эти измерители являются столь же распространенным прибором для инженеров, связанных с оптоволоконными системами, как мультиметр для инженеров-электронщиков.

Рис. 22. Оптический измеритель мощности "GN 6000"

Оптические измерители мощности обеспечивают как измерение кабельных линий, так и анализ работы терминального оборудования, передающего сигнал в оптическую линию.

В паре со стабилизированным источником сигнала OPM обеспечивает измерение затухания - основного параметра качества оптической линии. Особенно важным классом измерений для OPM является измерение параметров узлов оптической линии (участков кабеля, интерфейсов, сварочных узлов, аттенюаторов и т.д.).

Основными параметрами OPM являются:

Тип детектора;

Линейность усилителя;

Точность и график необходимой калибровки;

Динамический диапазон;

Точность и линейность работы;

Возможность поддержки различных оптических интерфейсов;

Примерная цена 400-1200 $.

АНАЛИЗАТОР ЗАТУХАНИЯ

Анализатор затухания, вносимого оптическим кабелем (Optical Loss Test Set - OLTS), представляет собой комбинацию оптического измерителя мощности и источника оптического сигнала (рис.23). Различают интегрированные и раздельные измерители потерь.

Рис. 23.

Интегрированные имеют источник сигнала и измеритель мощности в одном устройстве, а разделенные измерители представляют собой набор из источника сигнала и ОРМ. Соответственно, технические параметры анализаторов потерь содержат все перечисленные параметры для источников сигнала и оптических измерителей мощности.

Анализаторы потерь оптической мощности обеспечивают пошаговый анализ оптической линии передачи, включая участки кабеля, места соединений и сварок. Это в первую очередь касается раздельных эксплуатационных анализаторов потерь оптической мощности. В то же время интегрированные анализаторы потерь, которые обычно применяются для промышленного анализа, обладают повышенной функциональностью и точностью измерений. Например, многие двух-частотные анализаторы могут выполнять измерения на длинах волн 1310 и 1550 нм автоматически.

ДЕТЕКТОР ПОВРЕЖДЕНИЙ ВОЛОКНА

В сочетании с источником света используется для проверки целостности волокна и других задач. Легкий, ручной. Примерная цена: 600 $.

ИДЕНТИФИКАТОР ВОЛОКОН

Используется для определения прохождения излучения через оптическое волокно. Легкий, компактный, размером в три спичечных коробка, полевой прибор. С помощью этих приборов можно тестировать целостность волокна, проверять маркировку кабеля или подтверждать наличие или отсутствие сигнала перед изменением маршрута или техническим обслуживанием, вводить и выводить оптический сигнал через изгиб оптического волокна. Примерная цена: 1000-1200 $

ОПТИЧЕСКИЙ РЕГУЛИРУЕМЫЙ АТТЕНЮАТОР

Незаменим при определении коэффициента ошибок в цифровых системах. Используется совместно с оптическим ваттметром и измерителем КО. Легкий, ручной.

Примерная цена: 1000-3000 $.

ОПРЕДЕЛИТЕЛЬ ОПО

Специально разработан для определения оптических потерь на отражение. В состав прибора входят калиброванный источник света, оптический ваттметр и другие специальные составные части. Прибор определяет ОПО более точно, чем обычный оптический рефлектометр. Примерная цена: 1500 - 5000$

ВОЛОКОННЫЙ ЛОКАТОР

Прибор обладает всеми возможностями оптического рефлектометра в части определения расстояния до места повреждения, отличается легкостью, компактностью, простотой в работе и предназначен для использования в полевых условиях.

Примерная цена: 2500-5000 $.

ОПТИЧЕСКИЙ РЕФЛЕКТОМЕТР

Оптические рефлектометры (Optical Time Domain Reflectometer - OTDR) являются наиболее полнофункциональным прибором для эксплуатационного анализа оптических кабельных сетей.

Рефлектометр представляет собой комбинацию импульсного генератора, разветвителя и измерителя сигнала и обеспечивает измерение отраженной мощности при организации измерений с одного конца. Рефлектометры действуют по принципу радара: в линию посылается импульс малой длительности, который распространяется по оптическому кабелю в соответствии с релеевским рассеянием и френелевским отражением на неоднородностях в оптическом кабеле (дефекты материала, сварки, соединители и т.д.). Управляющий процессор обеспечивает согласованную работу лазерного диода и электронного осциллографа, создавая возможность наблюдения потока обратного рассеяния полностью или по частям. Для ввода импульсов в волокно используются направленный ответвитель и оптический соединитель. Поток обратного рассеяния через оптический соединитель и направленный ответвитель поступает на высокочувствительный фотоприемник, где преобразуется в электрическое напряжение. Это напряжение подается на вход Y электронного осциллографа, вызывая соответствующее мощности потока обратного рассеяния отклонение луча осциллографа. Ось X осциллографа градуируется в единицах расстояния, а ось Y - в децибелах.

Оптический импульсный рефлектометр (OTDR) - это устройство, которое, на основе использования явления рассеяния света широко используется для измерения затухания в ОВ и их соединениях, длины ОВ или волоконно-оптических линий и расстояния до любого их участка.

Блок-схема типичного импульсного рефлектометра приведена на рис. 24.


Рис. 24.

Работа прибора основана на измерении мощности светового сигнала, рассеянного различными участками волоконно-оптической линии.

Световые импульсы относительно большой мощности от встроенного в импульсный оптический рефлектометр источника вводятся в волокно, а высокочувствительный приемник измеряет временную зависимость мощности светового сигнала, возвращающегося из тестируемого волокна обратно в рефлектометр.

Временная задержка сигнала равна удвоенному расстоянию до тестируемой области, деленному на групповую скорость света в волокне.

Мощность принимаемого сигнала определяется коэффициентом обратного рассеяния, мощностью тестирующего светового импульса, уменьшающейся по мере распространения света вперед, и затуханием рассеянного сигнала на своем пути назад. Следовательно, принимаемая мощность - это функция потерь на проход импульса до тестируемого участка волокна и обратно и коэффициента обратного рассеяния или отражения.

На участках однородного волокна, для которых вполне оправдано предположение о постоянстве коэффициента обратного рассеяния, импульсный рефлектометр можно использовать для измерения коэффициента затухания волокна и потерь на неоднородностях или элементах линии, а также для определения местоположения обрывов и соединений волокна и места установки разъемов. Кроме того? рефлектометр выдает графическое представление состояния тестируемого волокна. У него имеется и еще одно преимущество по сравнению с сочетанием источника света и ваттметра? или тестера для определения потерь: при использовании рефлектометра требуется доступ только к одному концу волокна.

В большинстве случаев рефлектометры используются для обнаружения повреждений в установленных кабелях и для оптимизации соединений. Однако они весьма полезны и при проверке оптических волокон и поиска в них производственных дефектов. В настоящее время ведется работа по улучшению разрешающей способности рефлектометров при работе на короткие расстояния (в сетях LAN) и выполнении новых задач? таких? как оценка значения потерь при отражении от разъемов.

Работа оптических рефлектометров.

Главной целью измерений, проводимых с использованием оптических рефлектометров, является определение импульсной характеристики тестируемого волокна. Как известно, импульсную передаточную характеристику исследуемого устройства можно получить в том случае, если на его вход подать бесконечно короткий импульс. Тестирующий импульс оптического рефлектометра имеет конечную длительность и, по этому, реальный временной отклик - рефлектограмма представляет собой свертку импульсной передаточной функции волокна с тестирующим импульсом.

Типичная рефлектограмма импульсного рефлектометра приведена на рис.25.


Рис. 25.

Вертикальная шкала определяет уровень рассеянного (отраженного) сигнала в логарифмических единицах. Горизонтальная ось соответствует расстоянию от рефлектометра до тестируемой области волокна.

По формуле Рэлея интенсивность рассеяния света обратно пропорционально четвертой степени длины волны. Суммарные потери на Рэлеевское рассеяние количественно могут быть оценены по формуле:

ДБ/км, (61)

где К р - коэффициент рассеяния, для кварца равный 0,8 [(мкм4? дБ)/км];

Длина волны, мкм.

В ОВ рассеяние на частицах примеси может быть уменьшено практически до нуля, но рассеяние на «вмороженных» неоднородностях принципиально уменьшить нельзя, именно они определяют минимальную величину потерь на рассеяние.

На рис. 25 показаны, также, сигналы от разъемов, сварных соединений, механических соединений, потери на изгибах и трещинах и отражения от них.

Разъемы. Наличие разъема в волоконно-оптической линии приводит к появлению пика на рефлектограмме, обусловленного френелевским отражением на торцах соединяемых волокон? и снижением величины рассеянного сигнала сразу за ним из-за вносимых им потерь.

Сварные соединения. На сварных соединениях френелевское отражение отсутствует? так как сколотые торцы волокон сплавляются друг с другом. Однако на сварных соединениях потери все-таки есть. Хорошо сваренное соединение трудно "засечь"? так как потери на нем невелики и появляющаяся «ступенька» на рефлектограме очень мала. Наличие даже небольших признаков Френелевского отражения (пика на рефлектограмме) - верный признак того? что сварное соединение - очень низкого качества.

Потери на изгибах. Это просто потери в месте изгиба. Если такие потери локализованы? то их трудно отличить от потерь на сварные или механические соединения.

Повышение чувствительности импульсных оптических рефлектометров.

Измерение параметров волоконно-оптической линии возможно только в том случае, если мощность рассеянного сигнала, попадающего на детектор, превышает мощность шума, т.е. отношение сигнал/шум должно быть больше единицы. Мощность детектируемого сигнала определяется мощностью и энергией лазерного импульса, вводимого в волокно, и коэффициентом обратного рассеяния. Отметим,? что энергия светового импульса прямо пропорциональна его длительности. Поэтому? для увеличения дальности действия рефлектометра увеличивают длительность световых импульсов. Однако? чем больше длина импульса?, тем больший отрезок волокна он заполняет. При увеличении длины импульса увеличиваются и те участки волокна? которые попадают внутрь импульса и "просматривание" которых становится невозможным. Тем самым снижается разрешающая способность? рефлектометра. Для увеличения отношения "сигнал-шум" принимаемого сигнала? рефлектометр посылает множество импульсов? а затем усредняет данные об отраженных сигналах.

Мертвые зоны.

Считается, что мертвые зоны, обнаруживаемые на рефлектограмме, зависят от одного основного фактора - длительности импульса, проходящего по волокну. Так как она может быть выбрана, то каждому ее значению соответствует определенная мертвая зона. Следовательно, чем больше длина импульса, тем больше мертвая зона. Однако после установления определенной длительности импульса (для определенного волокна) становятся очевидны другие факторы. В частности, при конкретной длительности импульса мы можем столкнуться с различными мертвыми зонами для отражающих неоднородностей, зависящих от расстояния до точки отражения и интенсивности отраженного сигнала. Дело в том, что для того чтобы принимать отраженный сигнал, детектор рефлектометра должен обладать большой чувствительностью. При этом, когда на детектор приходит сильный сигнал (от точки с высокой отражательной способностью) происходит перегрузка детектора. Мертвые зоны всегда связаны с наличием отражений и вызваны насыщением детектора рефлектометра. В этом случае детектору потребуется определенное время для восстановления чувствительности после перегрузки, что приводит к потере информации. Как результат, определенный участок волокна исключается из процесса тестирования. При этом следует различать два типа мертвых зон (рис. 27):

1. Мертвая зона отражения - определяется расстоянием между началом отражения и точкой с уровнем - 1.5 дБ от вершины понижающегося отрезка кривой отражения, после чего следующие события легко идентифицировать.

2. Мертвая зона затухания - определяется расстоянием от начала отражения до точки, в которой произошло восстановление чувствительности приемника с погрешностью 0.5 дБ от установившейся рефлектограммы обратного рассеяния и зависит от длительности импульса, длины волны, коэффициента обратного рассеяния, коэффициента отражения и полосы пропускания.

Таким образом, понятие «мертвой зоны» заключается в количественном определении расстояния, на котором после сильного отражения происходит потеря данных.

Мертвая зона ослабления, как правило, указывается для наиболее коротких импульсов.

Рис. 26.

Рис. 27.

Лучшие оптические рефлектометры характеризуются большим динамическим диапазоном, кратным определением затухания, однокнопочным интерфейсом, упрощенной панелью управления, наличием дисплея, использованием “дальнобойной” оптики с высокой степенью разрешения, применением специального программного обеспечения, оборудованы дисководом для сохранения данных и принтером, для их распечатки, а также имеют возможность определения ОПО и сопоставления нескольких рефлектограмм. Выбирая рефлектометр, следует убедиться, что он может работать с одномодовоми или многомодовыми волокнами. Модульные оптические рефлектометры обладают большей гибкостью и могут быть сконфигурированы по-разному. Примерная цена: 10000-40000 $.

ИЗМЕРИТЕЛЬ ХРОМАТИЧЕСКОЙ ДИСПЕРСИИ.

Этот прибор, как следует из его названия, предназначен для измерений хроматической дисперсии волоконных световодов. Как правило, выполнен в лабораторном варианте для использования в закрытых помещениях. Различные методы измерения хроматической дисперсии подробно описаны в ITU.

Примерная цена, в зависимости от метода: 25000 - 120000$.

ИЗМЕРИТЕЛЬ ПМД.

Поляризационная модовая дисперсия волоконных световодов, как и хроматическая, ограничивает широкополосность волоконных световодов. Как правило, измеритель ПМД выполнен в лабораторном варианте для использования в закрытых помещениях. Различные методы измерения ПМД подробно описаны в ITU.

Примерная цена, в зависимости от метода: 40000 - 200000$.

СИСТЕМА КОНТРОЛЯ РАБОТОСПОСОБНОСТИ

Данная компьютеризированная система идеально подходит для автоматического управления работой целой волоконно-оптической сетью. Все задачи: монтаж, текущий уход, разрешение проблем, ремонт, могут быть быстро отслежены и проконтролированы с центральной станции. Любые обрывы и прочие неисправности в считанные минуты локализуются с точностью до нескольких метров. Примерная цена: свыше 100000 $.

БРИЛЛЮЭНОВСКИЙ ОПТИЧЕСКИЙ РЕФЛЕКТОМЕТР.

Этот прибор производит измерения не только рэлеевского рассеяния и френелевского отражения, как оптический рефлектометр, но и способен измерить сдвинутую по частоте относительно центральной волны излучения компоненту рассеяния Мандельштама-Бриллюэна. Способен различать напряженные участки волокна и оценивать степень их нагрузки. Может использоваться и как обычный рефлектометр. Примерная цена: 200000$

Важным достоинством волоконно-оптических линий связи является их потенциальная долговечность. Однако для обеспечения долголетней работы необходимы соответствующие условия и главное из них - отсутствие механических напряжений в волокне, которые могут возникать при нарушении технологий производства кабеля, его прокладки, при мерзлотных деформациях грунта, при ветровых нагрузках и обледенении подвесного кабеля, просадке грунта (особенно вблизи высотных зданий и мостов), при вибрациях кабеля, проложенного вблизи автомагистралей, при землетрясениях, прочих техногенных вмешательствах. Повышенное натяжение волокна в кабеле вызывает деградацию его прочностных характеристик, что в конце концов приводит к разрыву волокна. Даже незначительное увеличение натяжения волокна может привести к многократному уменьшению его срока службы. Время жизни волокна в нормальных условиях эксплуатации (при относительном удлинении волокна меньше 0,35 %) составляет 25 лет и более, в то время, как уже при относительном удлинении 0,5% разрыв волокна произойдет в течение 1 (одного)!!! года (рис. 28).


Рис. 28

Поэтому надежность волоконно-оптических линий связи невозможно оценить, не имея достоверной информации о натяжении волокна в кабеле. Обычные оптические рефлектометры не в состоянии определить степень натяжения волокна, поскольку величина оптических потерь при возникновении напряжений в волокне, как правило, остается в пределах нормы вплоть до момента наступления необратимых изменений в волокне. Бриллюэновский рефлектометр незаменим на предприятиях по производству оптического кабеля и для крупных операторов связи, масштабы сетей и объемы передачи данных которых делают вопросы качества и надежности связи определяющими.